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Active parental care, reproductive
performance, and a novel egg predator
affecting reproductive investment in the
Caribbean spiny lobster Panulirus argus
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Abstract
Background: We used the Caribbean spiny lobster Panulirus argus, one of the largest brooding invertebrates in the
Western Atlantic, to test for the presence/absence of active parental care and to explore reproductive performance
in large brooding marine organisms. Given [i] the compact and large embryo masses produced by P. argus, [ii] the
expected disproportional increase in brooding costs with increasing embryo mass size, and [iii] the theoretical
allometry of egg production with increasing body size, we predicted that parental females in this large species
will engage in active brood care. We also predicted that larger broods from larger lobsters should suffer higher
mortality and brood loss than smaller broods from smaller lobsters if parental care was minimal or absent.
Lastly, we expected smaller females to allocate disproportionably more resources to egg production than larger
females in the case of minimal parental care.

Results: Females brooding early and late embryos were collected from different reefs in the Florida Keys Reef tract,
transported to the laboratory, and maintained in separate aquaria to describe and quantify active parental care
during day and night. A second set of females was retrieved from the field and their carapace length, fecundity,
egg size, reproductive output and presence/absence of brood-dwelling pathogens was recorded. Laboratory
experiments demonstrated that brooding females of P. argus engaged in active brood care. Females likely use
some of the observed behaviors (e.g., abdominal flapping, pleopod beating) to provide oxygen to their brood
mass. In Panulirus argus, females did not suffer brood loss during embryo development. Also, reproductive output
increased more than proportionally with a unit increase in lobster body weight.

Conclusions: Our results agree with the view that large brooding marine invertebrates can produce large embryo
masses if they engage in active parental care and that the latter behavior greatly diminishes reproductive
performance costs associated with producing large embryo masses. Lastly, we report on a nemertean worm that,
we show, negatively impacts female reproductive performance.
Background
The degree of parental care varies broadly among mar-
ine invertebrates, even within monophyletic clades [1, 2].
At one extreme, some groups do not provide any form
of parental care, spawning small unfertilized or fertilized
eggs into the pelagic environment in which development
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of embryos and/or larvae takes place (various bivalves
and sea urchins [3, 4]). At another extreme, some
species with abbreviated or direct development produce
large yolky eggs that are brooded and hatch as advanced
larval stages or juveniles. These early ontogenetic stages
might remain in the parental brood chamber and/or
dwelling for long periods of time and can be fed,
defended, and groomed by females (various seastars, iso-
pods, and amphipods, among others [5–7]). In between
extremes, many species exhibit indirect development,
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and parental care is restricted to the protection of em-
bryos incubated in bodily chambers of varying complex-
ity (e.g., many crustaceans, including spiny lobsters [8]).
Explaining the evolution and adaptive value of parental
care is one of the most relevant yet still not completely
understood problems in evolutionary biology [1, 2].
In marine brooding invertebrates, benefits to brooded

offspring include, but are not limited to, protection
against predators [5, 9, 10], protection from adverse abi-
otic conditions [5, 9, 10], and/or physiological provision-
ing [11]. Still, brooding embryos in bodily chambers is
not exempt of costs. For instance, reproductive perform-
ance (i.e., fecundity, reproductive output) of parental fe-
males might decrease due to brood loss, in turn, driven
by increases in embryo volume during development, em-
bryo crowding and loss from the abdominal chamber
[12]. Embryo masses accumulate sediment, detritus, bac-
teria, algae, fungi, and many other epizootic organisms
(e.g., ciliates) that might further impact parental repro-
ductive performance [13–16]. Egg predators are known
to destroy embryo masses when experiencing population
outbreaks, impacting not only female fecundity but also
the host population health [17–19]. Perhaps more im-
portantly, large densely packed embryo masses can be
considered living tissue but without a circulatory system
[20]. Most embryo masses are larger than the theoretical
1 mm limiting thickness that allows sufficient oxygen
supply by diffusion [21] and oxygen limitation does
occur at their centers [20, 22, 23]. Oxygen depletion at
the interior of embryo masses has been shown to be
severe, even early during embryo development, when
respiration rates of early embryos are much lower than
those of late embryos [20]. Hypoxic conditions do im-
pact embryo development, often driving asynchronous
development within embryo masses (e.g., periphery ver-
sus center) [9, 24, 25] and even embryo mortality [26].
Likely, parental behaviors exclusively directed toward

embryo masses, as reported for various invertebrates,
have evolved as a mechanism to retard or prevent foul-
ing, repel egg-predators, and improve oxygen availability
to developing embryos [14, 20, 27]. Ultimately, active
parental care is expected to, and has been shown to, im-
prove reproductive performance. For instance, grooming
of the brood mass by parental females increases embryo
survival and hatching rates [14, 27]. Similarly, ventilation
of brooded embryos by parental females (e.g., abdominal
flapping or pleopod fanning [23, 25]) is known to in-
crease oxygen levels at the center and periphery of em-
bryo masses and appears to speed up embryo
development [25]. Our understanding of what consti-
tutes 'active parental care' has improved considerably
during the last decade thanks to studies focused on a
few marine invertebrates [25, 27–30]. Nonetheless,
whether or not active parental care is the rule rather
than the exception in brooding marine invertebrates still
remains an open question.
In marine brooding invertebrates, brooding costs

should be considerable in large females from large spe-
cies, as they have the potential to produce massive em-
bryo masses and also suffer the putatively heavy costs of
brooding [31, 32]. Theoretical considerations suggest
that the costs associated with brooding (i.e., oxygen
provision, grooming) increase non-linearly with in-
creases in brood mass, potentially resulting in the inabil-
ity of large adults to successfully rear all brooded
embryos [23–25]. Furthermore, with increases in body
size, the capacity for egg production is also expected to
scale at a pace greater than the space available for
brooding, and thus, larger adults might be capable of
producing more gametes than can be successfully
brooded [33, 34] (Fig. 1a).
Overall, large species of brooding marine invertebrates

should suffer exacerbated brooding costs, resulting in
poor reproductive performance, unless these large par-
ental individuals allocate considerable time and energy
to attending their broods [23]. Indeed, brood mass size
and parental behaviors are likely interlinked; large paren-
tal individuals with large broods either allocate a consid-
erable amount of energy and time to brood their
embryos, or suffer the costs in terms of reproductive
performance, when producing large embryo masses.
Various studies during the last decades have demon-
strated that physiological costs (i.e., increased metabolic
rate) are considerable in females engaging in active par-
ental care [20, 23, 35]. Yet, whether brooding costs also
result in diminished reproductive performance in large
species of brooding marine invertebrates has been
poorly explored. Studies on large species are particularly
relevant as it will help to test whether or not excessive
physiological costs associated to brooding large embryo
masses limit the evolution of brooding in large marine
invertebrates [34].
In this study, we are particularly interested in testing

whether or not large marine invertebrates engage in ac-
tive parental care, and whether brooding costs, mea-
sured in terms of reproductive performance, are suffered
by these brooding species. For this purpose, we used the
Caribbean spiny lobster Panulirus argus as a model or-
ganism, one of the largest crustaceans in the Atlantic,
attaining up to 45 cm in total length [36, 37] (Fig. 1b).
As reported for all members of the Pleocyemata, a
species-rich clade of crustaceans to which spiny lobsters
belong, P. argus produces a large number of embryos
that are carried by females underneath the abdomen im-
mediately after spawning and are maintained until they
hatch as larvae [38, 39]. The problem of oxygen limita-
tion seems particularly critical in this lobster, which pro-
duces compact, large, semi-spherical masses of embryos



Fig. 1 Relationship between body size and egg production constraining/favoring brooding and the model species. a Hypothetical allometric
relationship between body size and egg production (continuous curve), and brooding space (dashed curve) in marine invertebrates (after [34]). In
the figure, the capacity for egg production increases faster than the space available for brooding. The conditions above are expected to favor
brooding in small but not large marine invertebrates and determine heavy costs, in terms of reproductive investment, for large brooding marine
invertebrates. b The Caribbean spiny lobster Panulirus argus. Photo credit: J. Antonio Baeza
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that frequently exceed 8–10 cm in maximum diameter
(JAB, pers. obs). In agreement with the notion above, a
recent study has demonstrated asynchronous develop-
ment of the embryo mass of P. argus: embryos at the
periphery develop more quickly (24–48 h ahead) than
those at the center [40]. We predict that ovigerous fe-
males of P. argus should engage in active brood care
given the large embryo masses produced by this species.
If the above is correct, then costs in terms of reproduct-
ive performance should be low or absent in this large
marine invertebrate. By contrast, if P. argus does not en-
gage in active parental care, then we expect considerable
costs in terms of reproductive performance, including
severe brood loss, decreased reproductive output, as well
as negative allometric scaling of brood loss and repro-
ductive output with body size. While studying repro-
ductive performance in P. argus, we noticed the
presence of an egg mass-dwelling nemertean belonging
to the genus Carcinonemertes. We provide information
about the prevalence and impact of this worm on the
brood masses of infected lobsters.
Results
Active parental care in Panulirus argus
Six behaviors were observed and recorded in ovigerous
and non-ovigerous (control) females of P. argus. Four of
these behaviors were classified as events (i.e. abdominal
flapping, pleopod fanning, 4th and 5th pereopod prob-
ing), while the remaining two behaviors were considered
as states (i.e. standing, abdomen extension) (Fig. 2).
Only one (i.e., 4th pereopod probing, Fig. 2) out of the six
recorded behaviors were found to be exclusive to ovigerous
females in P. argus. However, the remaining of the recorded
behaviors were observed at extremely low frequencies in
non-ovigerous females. For instance, abdominal flapping
and pleopod fanning were observed for a very short time
period only three times in all non-ovigerous females.
Ovigerous females were observed to either exclusively

or predominantly perform certain behaviors in a specific
sequence. Females first raised their body from the bot-
tom of the aquarium (stand up) by extending the pereo-
pods and, immediately or after a few seconds of raising
their bodies, females expanded the abdomen (abdomen
extension). Next, females flapped the abdomen (abdom-
inal flapping), fanned the pleopods back and forth (pleo-
pod fanning) or performed both behaviors at the same
time repetitively from a few seconds to up to an hour
(maximum time period for analysis of behavior)
(Additional file 1: Video 1). While standing up and with
the abdomen extended, females were also observed to
probe their embryos either with the 4th or 5th (chelae
bearing) pereopods. The latter two behaviors were per-
formed while females were fanning their embryos or
during short time periods in which females stopped flap-
ping and/or fanning the abdomen and/or pleopods. The
sequence of the behaviors above lasted from a few sec-
onds to an hour (maximum time period used for meas-
uring female behaviors). After performing the behavioral
sequence above for a few seconds, minutes or hours, fe-
males either walked around or crouched again at the bot-
tom of the aquarium (Fig. 2).



Fig. 2 Active parental care in the Caribbean spiny lobster Panulirus argus. Different behaviors performed exclusively or predominantly by
ovigerous females under laboratory conditions. a–c Abdominal flapping and pleopod beating. Notice the movement of the embryos carried by
the pleopods forward (b) and backward (in a and c) while the abdomen is partially extended. Also, watch video in Additional file 1. d 4th
pereopod probing in female displaying a standing position. e 5th pereopod probing in female displaying a standing position. In (d) and (e), the
arrows point to the 4th and 5th pereopod, respectively
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The frequency or duration of the behaviors above did
change depending on embryo developmental stage and/or
diel cycle. The frequency of grooming bouts by the 4th pe-
reopods, pleopod fanning / abdominal flapping, and the
total time spent in a standing position were greater in fe-
males carrying late than early stage embryos (mixed nested
ANOVAs: P < 0.05 in all cases; Table 1 and Fig. 3). Also,
grooming bouts by the 4th pereopod, and pleopod fanning /
abdominal flapping bouts were more frequently performed
during night than during day hours (mixed nested ANOVA:
P < 0.05 in all cases; Table 1 and Fig. 3). The remainder of
the studied behaviors did not vary statistically between
females carrying early or late embryos during day or night.

Reproductive performance in Panulirus argus
A total of 19, 18, 20, and 11 female lobsters carrying em-
bryos in stages I, II, III, and IV, respectively were
sampled. The mean (± standard deviation, SD) CL was
76.06 ± 8.95 mm and ranged from 51.3 to 100.4 mm. No
significant differences in body size (CL, carapace length)
were detected between females carrying embryos in dif-
ferent developmental stages (ANOVA: F = 2.41, df = 3,64,
P = 0.0750). A total of five females were found to host
nemertean parasites in their brood masses. These para-
sitized females were not considered for the initial ana-
lysis of reproductive investment (but, see below).
Average (± SD, range) fecundity varied between 299

328 (±162 537, 105 858–757 278) embryos lobster−1 and
347 001 (±131 652, 205 569–674 041) embryos lobster−1

in females carrying early and late stage embryos, respect-
ively. An ANCOVA did not detect any effect of embryo
stage (I versus IV) on fecundity (F = 0.8, d.f. = 1, 29, P =
0.3784). On the other hand, female body size (CL) did
affect fecundity; large females carried more embryos



Table 1 Mixed model nested ANOVAs to test the effect of embryo developmental stage (early versus late or control versus early
versus late) and diel cycle (day versus night) in the active brood care of the Caribbean spiny lobster Panulirus argus

Source Nparameters d.f. d.f.denominator F P Variance (%)

4th pereopod grooming bouts (early versus late)

Embryo Stage 1 1 4 0.61 0.4791

Day Time (Stage, Female ID) 6 6 12 7.19 0.0020

Female ID 63.32

5th pereopod grooming bouts (control versus early versus late)

Embryo Stage 2 2 6 5.19 0.0491

Day Time (Stage, Female ID) 9 9 18 2.74 0.0331

Female ID 53.73

Pleopod fanning + Abdomen flapping (control versus early versus late)

Embryo Stage 2 2 6 15.13 0.0045

Day Time (Stage, Female ID) 9 9 18 3.38 0.0134

Female ID 67.83

Abdomen extension (control versus early versus late)

Embryo Stage 2 2 6 4.08 0.0759

Day Time (Stage, Female ID) 9 9 18 1.77 0.1442

Female ID <1.00

Standing (early versus late)

Embryo Stage 1 1 4 2.85 0.1665

Day Time (Stage, Female ID) 6 6 12 0.26 0.9470

Female ID <1.00

Abdominal extension (control versus early versus late)

Embryo Stage 2 2 6 5.4443 0.0448

Day Time (Stage, Female ID) 9 9 18 0.4 0.919

Female ID 7.24

In the different analyses, developmental stage and diel cycle were considered fixed effects while female identity was considered a random effect. The proportion
of the variance in the dataset explained by female identity is shown for each analysis. Numbers in bold indicate significant p-values
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than small females (F = 58.04, d.f. = 1, 29, P < 0.0001).
The interaction term of the ANCOVA was not signifi-
cant (F = 0.1972, d.f. = 1, 29, P = 0.6603) (Fig. 4a). Thus,
females, either large or small, did not loose embryos sig-
nificantly throughout embryo development.
Embryo volume varied between 0.0834 (±0.0204, 0.122 -

0.054) mm3 and 0.1008 (±0.0142, 0.1200 - 0.083) mm3 in
females carrying early and late stage embryos, respectively.
An ANCOVA demonstrated an effect of embryo stage on
egg volume (F = 6.55, d.f. = 1, 29, P = 0.0160). In turn, CL
did not affect embryo volume (F = 0.20, d.f. = 1, 29, P =
0.6570). The interaction term of the ANCOVA was not
significant (F = 0.349, d.f. = 1, 29, P = 0.5589; Fig. 4b). In
general, embryo volume in P. argus increased by 17.2 %
from early to late stage and females from all body sizes
carried similarly sized embryos.
Reproductive output varied between 31.30 and 61.46 %

and represented a mean ± SD of 49.21 % (±8.17) of lob-
ster body dry weight. Reproductive output increased
with lobster body weight, i.e., RO exhibited positive
allometry, as the slope (b = 1.46, SEb = 0.14) of the line
describing the relationship between these two variables
(after log-log transformation) was significantly greater
than unity (t-test: t = 3.29, df = 1, 14, P = 0.0026; Fig. 4c).

Carcinonemertes sp. in brood masses of Panulirus argus
We noticed the presence of parasitic nemertean worms
from the genus Carcinonemertes in five (7.4 %) out of
the 68 sampled ovigerous females and we estimated
density of Carcinonemertes and embryo mortality in four
of these infested females (one each carrying embryos in
stages I, II, III, and IV, respectively). Density of Carcino-
nemertes varied between one worm per 1262 embryos
(or 0.08 worms per 100 embryos) in the female carrying
Stage I embryos (78.45 mm CL) and one worm per 193
embryos (or 0.51 worms per 100 embryos) in the female
carrying Stage IV eggs (73.78 mm CL). The mean ± (SD)
density of Carcinonemertes in these parasitized females



Fig. 3 Active parental care in the Caribbean spiny lobster Panulirus argus: behavior of ovigerous and non-ovigerous females under laboratory
conditions. The frequency (n bouts per hour) and total percentage of time (% time in 1 h) that each event (discrete acts, < 1 min duration) and
state (>1 min duration) was performed by ovigerous and non-ovigerous females carrying embryos at each developmental stage during day (D)
and night (N) hours is shown

Baeza et al. BMC Zoology  (2016) 1:6 Page 6 of 15
was one worm per 667 ± (460) embryos or 0.24 ± (0.19)
worms per 100 embryos (Fig. 5).
The mean proportion of empty capsules in the in-

fected females was 12.7 ± (10.8) % and varied between
0.8 % in the female carrying Stage I embryos (78.45 mm
CL) and 25 % in the female carrying Stage III embryos
(76.1 mm CL). In turn, the number of dead embryos var-
ied between 0 % in the female carrying Stage I embryos
(78.45 mm CL) and 23 % in the female carrying Stage III
embryos (76.1 mm CL). The mean number of dead em-
bryos in these infected females was 7.2 ± 10.7 %. No
empty capsules or dead embryos were noticed in non-
infected females (Fig. 5).
We compared fecundity, egg size and reproductive

output among infected and non-infected females. Vis-
ual examination of the data indicated that fecundity
in one of the infected females carrying stage I
embryos and the infected female carrying stage II
embryos was not dissimilar from that found in non-
infected females of similar body size (arrows in
Fig. 4a). By contrast, fecundity in the second infected
female carrying stage I embryos and in infected fe-
males carrying stage III, and IV embryos was much
smaller than that expected for non-infected females
of similar body size (see encircled data points in
Fig. 4a). Indeed, these last three infected females
represented data outliers whose fecundity was statisti-
cally lower than that expected for a non-infected
female of equal body size and carrying embryos in
the same stage (Fig. 4a). Carcinonemertes sp. did not
affect embryo volume of infected females, regardless
of embryo developmental stage. Lastly, reproductive
output in one of the infected females carrying stage I
embryos was much lower than that expected for non-
infected females of the same body size (lower arrow
in Fig. 4c).

Discussion
Active parental care in Panulirus argus
We expected the Caribbean spiny lobster Panulirus
argus to engage in active brood care, considering the pu-
tatively high costs, in terms of reproductive perform-
ance, that large brooding marine invertebrates should
face [20, 23–25]. Our results agree with the notion
above; laboratory observations have clearly shown that
ovigerous females do direct precise behaviors toward
their embryo masses. These behaviors were performed
either exclusively (i.e., 4th pereopod probing, standing)
or predominantly by ovigerous females (i.e., abdominal
flapping, pleopod fanning, 5th pereopod probing).
Therefore, abdominal flapping, pereopod fanning, stand-
ing, and pereopod probing, among a few others, can be



Fig. 4 Reproductive performance in the Caribbean spiny lobster Panulirus argus. a Fecundity, relationship between female body size (CL) and egg
number in females carrying early and late embryos. b Embryo size, relationship between female body size (CL) and egg volume in females carrying
early and late embryos. Bars represent standard deviations. c Reproductive output, relationship between female body weight (dry) and egg mass
weight (dry) after log-log transformation of the variables in females carrying early embryos. White, light gray, dark gray, and black dots represent
females carrying embryos in stages I, II, III, and IV, respectively. Arrows and circle in (a) and arrows in (c) indicate ovigerous females infected with the
egg predator Carcinonemertes sp
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considered ‘active brood care’ behaviors. We believe that
some of the observed behaviors are used by parental fe-
males to provide oxygen to their brood mass while others
are related to the detection of oxygen conditions and/or
foreign objects (e.g., detritus, egg predators) that have the
potential to impact reproductive performance [41, 42].
Ovigerous females of P. argus ventilate their embryo

masses (i.e., likely increasing oxygen ability at its center)
using abdominal flapping and fanning of the pleopods.
Abdominal flapping has been demonstrated to be the
specific behavior used by ovigerous females to increase
oxygen concentration at the center of the brood mass in
brachyuran crabs [20, 23, 25]. Abdominal flapping and a
second behavior, pleopod fanning, have also been ob-
served in various other groups of crustaceans that en-
gage in active brood care and their role in oxygen
delivery to embryos was proposed earlier in brachyuran
crabs [15, 16, 22, 43] and clawed lobsters [26], and most
recently in caridean shrimps [44]. In turn, the standing
position, another behavior frequently observed in oviger-
ous females of P. argus, probably improves the efficiency
of oxygen delivery to embryos in a manner similar to
that previously reported for crabs [20]. Experiments meas-
uring particular behaviors concomitantly with changes in
oxygen availability at the center of the embryo mass are
required to demonstrate that abdominal flapping and
pleopod fanning are indeed delivering oxygenated water
to the center of the embryo mass in P. argus.
In contrast to abdominal flapping and pleopod fan-

ning, 4th pereopod probing might be used in sensing the
environment at the periphery or within the embryo mass
of ovigerous lobsters. In decapod crustaceans, including
lobsters, the dactyls of pereopods do bear setae that
serve as mechanoreceptors or contact chemoreceptors



Fig. 5 Infection by the egg predator Carcinonemertes sp. in embryo masses of the Caribbean spiny lobster Panulirus argus. a Density of Carcinonemertes sp.
(number of worms per 100 embryos) in ovigerous females brooding eggs in different stages of development. b Effect of Carcinonemertes sp. in embryo
masses of ovigerous females brooding eggs in different stages of development. The proportion of healthy embryos (white bars), dead embryos (gray), and
empty capsules (black) in samples from each embryo mass is shown. The photographs show the nemertean egg predator (top right) and the effect of the
nemertean on the egg masses of ovigerous lobsters (bottom right)

Baeza et al. BMC Zoology  (2016) 1:6 Page 8 of 15
[45–51]. Information gathering from the brood mass via
pheromones has been previously reported for brooding
female crabs and spiny lobsters hatching their embryos
[41, 42, 52–56] and most recently in caridean shrimps
[44]. Ovigerous females of P. argus might use their 4th
pereopods to detect compounds produced by embryos
and/or foreign objects (e.g., detritus, parasites) and re-
spond accordingly, either by providing oxygen or remov-
ing particles, respectively. The 5th pereopods, each
bearing a small but well developed claw [36], might play
a function similar to that of the 4th pereopods, helping
both with (chemical) information gathering and removal
of exogenous particles that might potentially impact re-
productive performance, as shown before in other crus-
taceans with minute but ornamented claws on their last
pair of pereopods (in the anomuran crab Petrolisthes
violaceus [27]). Although 4th and 5th pereopod probing
was frequently performed by ovigerous females carrying
both early and late stage embryos, its putative function
might not be entirely efficient as suggested by the pres-
ence of predatory worms in the brood mass of a few ovi-
gerous females (see below).
The Caribbean spiny lobster P. argus exhibits active

parental care and the intensity with which ovigerous fe-
males performed different behaviors differed with em-
bryo developmental stage and time of the day. In
particular, abdominal flapping and pereopod fanning
were more often performed by females carrying late
compared to early embryos, in agreement with prelimin-
ary observations (in [41, 42]). Since the frequency of ab-
dominal flapping increases throughout the brooding
period, an increase in the amount of oxygen provided to
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the developing embryos is likely to occur [20]. Oxygen
consumption in embryos has been shown to increase
dramatically during development in every species of
crustacean in which this physiological function has been
studied [20, 22, 23, 25, 29, 57–59]. In general, the
increased brood care by brooding females throughout
embryo development probably serves to avoid problems
related to oxygen limitation for the embryos (e.g. in-
creased mortality, low development rate, small size at
hatching [9, 24]). Studies on oxygen consumption of em-
bryos through development in P. argus are needed to
corroborate the assertion above.
Panulirus argus females are also 'full time mothers' as

they engage in parental care both during day and night
[60]. Nonetheless, abdominal flapping and pereopod fan-
ning, two behaviors that likely deliver oxygen to the em-
bryos, together with embryo grooming using the 4th
pereopods, a third behavior likely involved in informa-
tion gathering from the brood mass, were more often
performed during the day than night. Previous studies
examining daily locomotor activity rhythm in P. argus
have shown that females are more active at dusk and
night than during the day [61, 62]. The information
above suggests that ovigerous females of P. argus allo-
cate time and energy differentially during the circadian
cycle to different functions likely to optimize resource
acquisition and use.
Lastly, previous studies in brachyuran crabs have dem-

onstrated that active parental care does result in meta-
bolic costs to ovigerous females [20, 58]. Herein, we
have focused on costs associated with reproductive per-
formance (see below). Nonetheless, studying metabolic
costs associated with active brood care in P. argus re-
mains to be addressed. These brooding costs (and
others, e.g., lost feeding opportunities) are expected to
be considerable in a large brooding marine invertebrate
like P. argus as well as in other spiny lobsters [20].

Reproductive performance in Panulirus argus
We expected P. argus to suffer high brooding costs
(e.g., elevated brood loss during development), if ovi-
gerous females did not exhibit parental care. By contrast,
if parental females engaged in active parental care, then
we expected ovigerous females to suffer low brooding
costs. Our results agree with the rationale above; we have
shown that parental care is considerable in this species
and concomitantly, costs measured in terms of reproduct-
ive performance were low or absent.
In the Caribbean spiny lobster, fecundity increased

with body size as reported for every species of spiny lob-
ster in which this reproductive parameter has been stud-
ied [63–71]. Also, average fecundity reported herein for
P. argus is within the range expected for a spiny lobster
of its body size range. For instance, fecundity varied
between 109,865 and 590,530 in P. marginatus from
Hawaii, a species in which ovigerous females vary be-
tween 54.3 and 105.4 mm CL [72]. Perhaps more im-
portantly, differences in fecundity between females
carrying early and late embryos were negligible (i.e.,
non-statistically significant), and thus, brood loss (if any)
did not increase disproportionately with increases in
brood size. Our results agree with those reported for the
Indo-Pacific ornate rock lobster P. ornatus and the
Western Australian rock lobster P. cygnus, two species
in which no significant brood loss was observed during
incubation [73, 74]. In the few other species of spiny
lobsters in which brood loss has been estimated, this has
been rather low (7.9 % in P. gracilis [75], 14–17 % in P.
gilchristi [76], 10–16 % in P. delagoae [77], 7.2 % in P.
inflatus [78]). Palinurus elephas from the western Medi-
terranean can be considered an exception as brood loss
reaches 26 % [70]. Brood loss appears to increase with
incubation time in lobsters [79]. Interestingly, brood loss
can be considerable in crustaceans that attain much
smaller body sizes than spiny lobsters. For instance, in
fiddler crabs from the genus Uca that grow no larger
than 20 mm in carapace width, brood loss varies and
can represent up to 43 % of initial fecundity [80]. In
turn, in caridean shrimps, in which ovigerous females at-
tain body sizes no larger than 25 cm total length, brood
loss varies between 12 % and can reach up to 74 %
(Table 6 in [81]). The information above, albeit limited,
suggests an inverse relationship between brood loss and
body size within one of many clades of brooding marine
invertebrates. This relationship deserves further attention.
As yet, that brood loss was negligible in P. argus does
agree with the notion that large brooding species that allo-
cate considerable attention to their brood masses experi-
ence reduced costs in terms of reproductive performance.
In P. argus, embryo volume did increase, but not con-

siderably, during development. The difference between
late and early embryos was, on average, only ~20 %,
slightly larger than that reported for other spiny lobsters
(egg size increase: 8.3 % in P. delagoae [77]). The modest
increase in volume throughout development in embryos
of P. argus might alleviate or ease, to some extent, the
costs associated with brooding. Studies on oxygen con-
sumption of eggs might help reveal whether or not small
changes in embryo size throughout development do rep-
resent an adaptation to alleviate brooding costs in large
marine invertebrates that produce large embryo masses
such as P. argus.
Reproductive output (RO) in P. argus was high

(49.21 % ± 8.17 of body dry weight) compared to that of
other crustaceans. For instance, in most of brachyuran
crabs, RO is limited to about 10 % (range: 3–22 %) of
body weight ([82–84], but see [85] for exceptions). In
caridean shrimp, with a body shape similar to that of
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lobsters, RO is slightly greater, varying between ~12 and
21 % of body weight [86, 87]. Unfortunately, to the best
of our knowledge, no previous studies have estimated re-
productive output in other species of spiny lobsters. Im-
portantly, the scaling of reproductive output with female
body weight in P. argus was positively allometric; egg
mass did increase more than proportionally with a unit
of increase in female body weight. By contrast, brood
weight most often exhibits an isometric or nearly iso-
metric constraint with increasing female body size in
most brachyuran crabs [85]. A limitation on space avail-
able for yolk accumulation in the cephalothorax appears
to be the main factor constraining RO and its scaling
with body size in other brooding crustaceans [85]. Un-
like crabs, but resembling caridean shrimps, the abdo-
men of lobsters is massive and their ovaries extend out
of the cephalothorax into the first abdominal segments
([88], and JAB, pers. obs.). An elongated abdomen most
likely allows distension of the organs (including gonads),
and subsequent increases in reproductive output, likely
explaining the positive allometric increases in RO with
body size in P. argus. We argue in favor of additional
studies examining constraints driven by body shape in
determining RO in marine invertebrates. As yet, the
positive allometric scaling of reproductive output with
body size in P. argus supports the notion that RO and
other reproductive parameters related to reproductive
performance do not decrease in large brooding inverte-
brates that do actively provide intensive brood care.

Carcinonemertes sp. in brood masses of Panulirus argus
Our study reports for the first time an embryo predator
from the brood mass of the Caribbean spiny lobster P.
argus. Preliminary observations on preserved specimens
have confirmed that the observed worms represent a
previously undescribed species from the genus Carcino-
nemertes and its description is underway. The genus
Carcinomertes can and does have a major impact on the
reproductive performance of crustaceans, and has been
implicated in the decline of king crab fisheries [18, 19,
89–91]. A few species of Carcinonemertes have been
reported before in spiny lobsters from the Pacific (see
Table 1 in [92]). However, the impact of this worm on
the reproductive performance of spiny lobsters is un-
known [19]. This study demonstrates for the first time
the negative impact of Carcinonemertes on the repro-
ductive performance of a spiny lobster. One infected
lobster carrying early embryos (Stages I) experienced a
significant reduction in fecundity and reproductive out-
put. In turn, lobsters with late stage (III and IV) embryos
suffered considerable reductions in fecundity and repro-
ductive output. The above pattern suggests that the ef-
fect of the predator on the embryo mass progresses
quickly during a single brooding event in P. argus.
Prevalence of Carcinonemertes. sp on P. argus was
relatively low (7.4 %) when compared to reports in other
infected populations (Callinectes arcuatus – 35 % [93],
Libinia spinosa – 69.2 % [94], Randallia ornata – 70 %
[95], Panulirus interruptus – 42 % [96]). Importantly, in
some crustacean host species, Carcinonemertes might
experience population outbreaks, destroying embryo
masses of their crustacean hosts, and, sometimes, affect-
ing host population health, and even resulting in de-
creased crab landings [18, 19, 91]. In the Caribbean,
landings of P. argus have declined during the last decades,
and various conditions are thought to play a role in such
population declines, including hurricanes, overfishing,
pollution, poor water quality, hypoxia, temperature ex-
tremes, viral disease, or a combination of the conditions
above [19, 97]. We argue in favor of future studies focus-
ing on the population biology of Carcinonemertes sp.,
given the potential of this embryo predator to cause exten-
sive damage to natural populations of the commercially
and ecologically important spiny lobster P. argus.

Conclusions
Parental care behaviors have rarely been reported for mar-
ine invertebrates (for exceptions see [6, 20, 43, 59], includ-
ing crustaceans, a species-rich clade with great anatomical,
physiological, reproductive, and ecological disparity. We
have shown that the Caribbean spiny lobster Panulirus
argus, a large marine invertebrate that broods bulky em-
bryo masses, engages in active parental care. Costs, mea-
sured in terms of reproductive performance, were absent
in this species, reinforcing the idea that brooding can be
achieved in marine invertebrates with relatively large body
sizes, if parental individuals play a major role in attending
to brooded embryos. Active parental care should result in
considerable metabolic costs to parental individuals [20].
Future studies in P. argus examining these putative meta-
bolic costs are warranted as they will help to illustrate the
relationship between mode of development (i.e., brooding
versus broadcasting) and body size, recognized for marine
invertebrates [9, 25, 34, 98].
Lastly, our study reports for the first time a nemertean

egg predator belonging to the genus Carcinonemertes
from the embryo mass of the Caribbean spiny lobster P.
argus. We argue in favor of studies aimed at revealing
the relative importance of this and other pathogens in
explaining declines in the landing of P. argus throughout
the wider Caribbean during recent decades.

Methods
Model organism: the Caribbean spiny lobster Panulirus
argus
Panulirus argus supports a multimillion-dollar fishery in
the Greater Caribbean and Gulf of Mexico, with landings
from 1984 to 1998 surpassing 330,187 metric tons [99].
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The above explains in great part the large body of litera-
ture on its anatomy, life history, ecology, behavior and
physiology accumulated during the last decades [36].
Still, despite the commercial value and ecological im-
portance of this large brooding invertebrate, no studies
on active brood care have been conducted (for excep-
tions see [41, 42]) and limited information exists on
individual-level reproductive performance [38, 100].
Mating in Panulirus argus may occur year round but

peaks in the early spring and summer with an increasing
photoperiod and warmer temperatures [101, 102]. Gen-
erally, males occupy and defend dens in shallow water
and attract females who are ready to spawn [39, 103].
Males transfer a spermatophore to the ventral surface of
the female [104]. Larger males have the potential to pro-
duce larger spermatophores, but males can scale their
spermatophore to the size of the female [105, 106]. Fe-
male mating receptivity appears to decrease upon receipt
of the spermatophore which is used to fertilize a single
clutch of eggs [107]. Clutch size increases with female
size [39] and the developing embryos are incubated for
approximately 3–4 weeks [108], during which time fe-
males may migrate to deep reefs before the embryos
hatch [109, 110]. Female can produce 2–4 clutches of
eggs per year with larger, older females reproducing earl-
ier and having more clutches per year [111]. Fishing
pressure has a strong influence on reproduction, which
slows growth [112] and decreases the size (but not the
age) at first reproduction [111]. Protection from fishing
not only increases the average size of females [113] but
may also increase the proportion of reproductively ma-
ture females in each size class [114]. Previous studies of
commercially exploited marine fishes have suggested
that larger females may produce higher quality larvae
[115] but in P. argus female size was found to be unre-
lated to egg size, egg C:N ratio, larvae size, or larvae
mortality [106].

Sampling of Panulirus argus
Ovigerous females of P. argus were collected between
June 22nd and July 25th, 2015 from various coral reefs
(6–20 m depth) along the Florida Reef Tract, 2 to 8 km
off Long Key (N 24° 49’26”, W 80°48’48”), Florida Keys,
USA. At each locality, lobsters were gently captured by
hand (with the aid of a tickle stick and hand net) while
scuba diving and transported alive to the laboratory.
Lobsters were euthanized in coolers full of ice and main-
tained therein until measurements on reproductive in-
vestment were taken.
In the laboratory, the carapace length (CL) of each

lobster was measured using a dial caliper (precision =
0.1 mm). Next, the embryos carried by brooding females
were gently removed with micro-forceps and classified
according to four different categories. Stage I embryos
displayed uniformly distributed yolk; stage II embryos
showed cell differentiation and yolk clusters; stage III
embryos had well-developed eyes and some visible chro-
matophores but no obvious development of abdomen
and thoracic appendages; stage IV embryos possessed
well-developed eyes and chromatophores, free abdo-
mens, and thoracic appendages.
Lastly, ovigerous lobsters used to test whether or not

P. argus engages in active parental care (see below) were
collected during the same time period and from the
same coral reefs above and maintained in 3.8 L transpar-
ent glass aquaria (51 × 51 × 30 cm3) filled with aerated
sea water (25–31 °C and 35–38 ppt) in an outdoor wet
lab with natural photoperiod (day : night = ~ 13: 11 h)
before being used for experiments.
Active parental care in Panulirus argus
To test whether ovigerous females of P. argus engaged
in active parental care (i.e. displaying behaviors likely
resulting in the provision of oxygen to and maintenance
of brooded embryos) female behavior was recorded
under laboratory conditions. Females with embryos at
different stages of development (I and IV, n = 3 per
stage) were placed individually in a 3.8 L transparent
glass aquarium (51 × 51 × 30 cm3) filled with aerated sea
water (25–31 °C and 35–38 ppt) in an outdoor wet lab
with natural photoperiod (day : night = ~ 13: 11 h). The
behavior of each female was videotaped continuously
over a 24-h period using a Brinno High Dynamic Range
(HDR) Time Lapse Camera - TLC200 Pro, starting 1 h
after the lobster was introduced to the tank. Infrared il-
luminators (Model IRLamp6, 40° beam angle, Wildlife
Engineering) were used to continuously record female
behavior throughout the night. Behavior of ovigerous fe-
males during the experimental period was classified and
quantified as events or states, according to their relative
duration [20]. Behaviors classified as states occurred
over relatively long time periods (more than 1 min, e.g.
standing) while discrete acts of relatively short duration
(less than 1 min, e.g. pleopod beating) were classified as
events most often occurring in bouts [116]. The fre-
quency of the occurrence of each behavioral event (n°
event bouts h−1) and the proportion of time that females
spent in each behavioral state (% time h−1) were re-
corded during two haphazardly selected time blocks of
1 h each, for females carrying embryos at the two devel-
opmental stages. Time blocks were randomly selected
when females were facing laterally, diagonally, or front-
ally to the camera, and their behavior could be recorded.
Also, to identify brooding (i.e., active parental care) from
non-brooding behaviors, non-ovigerous females (n = 3)
were recorded and their behavior was measured as de-
scribed above.
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To test whether behaviors related to brood care
varied during embryonic development, the frequency
or percentage of time that each behavior was per-
formed per unit of time (1 h) was compared between
day and night (daytime effect) among brooding fe-
males carrying embryos at different developmental
stages (embryo stage effect: early vs late or non-
brooding vs early eggs vs late eggs depending upon
the dependent variable, see Table 1) using independ-
ent mixed nested ANOVAs [117]. In the different
ANOVAs, daytime and embryo stage were treated as
fixed effects while female identity was treated as a
random effect [117]. The behavior of non-brooding
females was included in these ANOVAs only when
these females performed the events or states analyzed
more than once. Whenever, a specific event or state
was observed only once or not observed in each one
of the three non-brooding females, the behavior was
not considered part of the behavioral repertoire of
these females, and was not included in the mixed
nested ANOVAs. Data were square root or log-
transformed in order to meet the assumptions of the
statistical model [117].

Reproductive performance in Panulirus argus
We estimated three different individual-level reproduct-
ive performance parameters in brooding females of P.
argus: fecundity, embryo size, and reproductive output.
For this purpose, we gently detached with forceps the to-
tality of the embryos carried by females underneath the
abdomen. Then, ten embryos from each mass were sub-
sampled randomly, and the lengths along the short and
long axis of each embryo were measured under the
microscope (Leica S8AP0) to a precision of 0.001 mm.
Embryo volume was estimated with the formula for the
volume of an ellipsoid [118], EV = 1 / 6(L S2 π), where
L = long axis and S = short axis. The effect of female
body size (CL, covariate) and egg stage (Stage I vs IV,
main factor) on egg volume was tested using an
ANCOVA [117].
Next, four sub-samples of 100 embryos each were iso-

lated from the brood mass of each female and dried with
the respective remaining embryo mass and female body
for at least 72 h at 70 °C and weighed to the nearest
0.01 mg with an analytical balance (Sartorius; ± 0.1 mg).
Fecundity was calculated with the equation F = EmMass
/ (Ess1 + Ess2 + Ess3 + Ess4) * 400 + 400, where F = total
number of embryos, and EmMass = dry weight of the
remaining embryo mass after the four egg sub-samples
(Ess1-4) have been taken. The effect of female body size
(CL) and egg stage (Stage I vs IV) on fecundity was
tested using an ANCOVA [117].
Lastly, reproductive output was estimated as the ratio

between dry weight of embryos and dry weight of the
females carrying early embryos (Stage I). This latter par-
ameter represents the amount of resources (biomass)
that females invest in reproduction [119]. We tested
whether reproductive output increased linearly (isomet-
rically) with female body size. The relationship between
egg dry mass and female body dry mass was examined
using the allometric model y = a*xb [120]. The slope b of
the log-log least-squares linear regression represents the
rate of power increase (b > 1) or decrease (b < 1) of the
estimate of reproductive allocation with a unit of in-
crease in lobster dry mass. To determine whether the
relationship deviated from linearity, a t-test was used
to test if the estimated slope b deviated from the ex-
pected slope of unity. Before conducting the test
above, assumptions of normality and homogeneity of
variances were checked and found to be satisfactory
[121]. Previous studied in P. argus has calculated fe-
cundity using the wet weight of the embryo and fe-
male mass [39]. No previous studies have estimated
egg size and reproductive output in this species as
well as fecundity using the dry weight of the embryo
and females mass, known to provide more accurate
estimates [39, 108].
Carcinonemertes sp. in brood masses of Panulirus argus
We noticed the presence of parasitic nemertean worms
from the genus Carcinonemertes in five (7.4 %) out of
the 68 studied ovigerous females (two lobsters carrying
stage I embryos and one each carrying stages II, III, and
IV embryos). We examined four out of these five in-
fected lobsters to describe the density of Carcinone-
mertes as well as the impact that the parasite had on
brood mortality and individual-level reproductive pa-
rameters (see above). First, we estimated embryo mortal-
ity by haphazardly collecting five sub-samples, each
comprised 100 eggs from the embryo mass of each fe-
male and counting the number of live embryos, dead
embryos, and empty capsules (i.e., embryos putatively
consumed by the parasite [19]). These embryo samples
were then returned to the egg-mass of each female to be
included in future fecundity measurements. Embryo
mortality was calculated as the average proportion (%) of
empty capsules and dead eggs present in our samples.
Next, the density of Carcinonemertes sp. was estimated
by haphazardly removing five sub-samples of 500 to 900
embryos each from the embryo mass of each infected fe-
male and counting the total number of worms in all
sub-samples. These embryos were also returned to the
egg-mass of each infected female. Density of Carcinone-
mertes was calculated as the number of worms found
per 100 embryos. All examinations and counts were
done under a Leica S8AP0 Stereoscope and a Wild
M5-97874 dissecting scope.
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