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Abstract

Background: Modifications of the ovipositor appear to have played a prominent role in defining the host range of
parasitoid hymenopterans, highlighting an important contributing factor in shaping their oviposition strategies, life
histories and diversification. Despite many comparative studies on the structure of the hymenopteran terebra, little
is known about functional aspects of the musculoskeletal ovipositor system. Therefore, we examined all inherent
cuticular elements and muscles of the ovipositor of the ichneumonid wasp Venturia canescens (Gravenhorst, 1829),
investigated the mechanics of the ovipositor system and determined its mode of function.

Results: We found that the movements of the ichneumonid ovipositor, which consists of the female T9 (9th abdominal
tergum), two pairs of valvifers and three pairs of valvulae, are actuated by a set of six paired muscles. The posterior and
the anterior 2nd valvifer-2nd valvula muscles flex and extend the terebra from its resting towards an active probing
position and back. The dorsal T9-2nd valvifer muscle is modified in V. canescens and forms distinct bundles that, together
with the antagonistically acting ventral T9-2nd valvifer muscle, change the relative position of the 2nd valvifer to the
female T9. Thereby, they indirectly tilt the Tst valvifer because it is linked with both of them via intervalvifer and
tergo-valvifer articulation, respectively. The 1st valvifer acts as a lever arm that transfers movements to the 1st
valvula. The posterior T9-2nd valvifer muscle and the small 1st-valvifer-genital membrane muscle stabilize the
system during oviposition.

Conclusions: From our examination of the elements of the musculoskeletal ovipositor system of ichneumonids,
we discussed leverages and muscle forces and developed a functional model of the underlying working mechanisms
adding to our understanding of a key feature that has largely determined the evolutionary success of the megadiverse

Ichneumonidae with more than 24,000 hitherto described species.
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Background

The vast majority of hymenopterans are parasitoids of
other insects. Apart from oviposition, their ovipositor
serves several tasks in the parasitoid lifestyle, i.e. navi-
gating or penetrating the substrate (if the host is con-
cealed) or the targeted egg/puparium, assessing the
host, discriminating between suitable and previously
parasitized hosts, piercing the host, injecting venom,
oviciding the competitors’ eggs and finding a suitable
place for egg laying [1]. In some species, the ovipositor
is also used to form a feeding tube for host feeding or
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defensive stinging [2]. Undoubtedly, modifications of
the ovipositor apparatus have been one of the key fac-
tors in the evolution of the parasitoids’ oviposition
strategies, the life histories and the enormous diversifi-
cation of this large and ecologically important insect
order [2-4].

The hymenopteran ovipositor consists of the female
T9 (9th abdominal tergum), two pairs of valvifers and
three pairs of valvulae (cf. Figs. 1a, ¢, 5a) derived from
the 8th and 9th abdominal segments (7th and 8th meta-
somal segments) (morphological terms are applied
according to the Hymenoptera Anatomy Ontology
(HAQO) [5-7]; a table of the terms used, their definitions
and synonyms is given in Table 2 in the Appendix). The
basally situated valvifers accommodate the operating mus-
culature, whereas all the valvulae are devoid of intrinsic
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musculature [8—10]. The 1st valvifers (fusion of the 8th
gonocoxites with the gonangula [10]; = gonangulum,
gonangula sensu [1]) anterordorsally are continuous with
the rami of the 1st valvulae (8th gonapophyses; = lower
valves sensu [1]). Their posterior angles articulate dorsally
with the female T9 via the tergo-valvifer articulation and
ventrally with the 2nd valvifers via the intervalvifer ar-
ticulation. The 2nd valvifers (9th gonocoxites) extend
in the form of the 3rd valvulae (9th gonostyli; = ovi-
positor sheaths semsu [1]) and are anteroventrally
articulated with the 2nd valvula (fusion of the 9th
gonapophyses; = upper valve sensu [1]) [8, 9], which is
secondarily re-separated except at the apex in some
parasitoid taxa [11]. The interlocked 1st and 2nd val-
vulae enclose the egg canal and form the terebra (=
ovipositor (shaft) sensu [1]), which is embraced by the
3rd valvulae when not in use. The ventral surface of
the 2nd valvula is interlocked with both of the 1st val-
vulae by a sublateral longitudinal tongue called the
rhachis, which runs within a corresponding groove
called the aulax along the dorsal surface of each of the
1st valvulae. This so-called olistheter system allows the
three parts of the terebra to slide longitudinally relative
to each other [9, 11]. The sensillar equipment of the
1st and 2nd valvulae is highly variable among parasit-
oid hymenopterans [2].

Despite many descriptive studies on the comparative
morphology of the hymenopteran terebra [8, 9, 11, 12],
the mode of function of the musculoskeletal ovipositor
system has only been described in some “symphytan”
families [10, 13-15], in the aculeate Apis mellifera Lin-
naeus, 1758 (Apidae) [8] and Cryptocheilus versicolor
(Scopoli, 1763) (Pompilidae) [16], in some species of
Cynipoidea [17, 18], and in a few parasitoid species of
Ceraphronoidea [19] and Chalcidoidea [20-27]. How-
ever, the underlying working mechanisms of the mus-
culoskeletal ovipositor system of the extremely diverse
and species-rich superfamily of Ichneumonoidea has
remained largely unexplored so far and little is known
about the actuation of the various ovipositor move-
ments that are executed during oviposition. In this
study, we investigated structural, mechanical and func-
tional aspects of the ovipositor of Venturia canescens
(Gravenhorst, 1829) (Hymenoptera: Ichneumonidae:
Campopleginae), a cosmopolitan, synovigenic [28],
non-host feeding [29], solitary, koinobiont larval endo-
parasitoid of several moth species (Lepidoptera) [30,
31]. The oviposition behaviour (Additional file 1) is de-
scribed by Rogers [32]. These parasitoid wasps coat
their eggs with virus-like particles (VLPs) to circum-
vent their host’s immune system [33-37] and exhibit
both  arrhenotokous and obligate thelytokous
reproduction modes [38—-41]. We aimed to (1) describe
the ovipositor of V. canescens, including all inherent
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cuticular elements and muscles, (2) examine the me-
chanics of this musculoskeletal system, (3) determine
its mode of function and (4) discuss the process of
oviposition.

Results and discussion

We combined light microscopy (LM), scanning electron
microscopy (SEM), synchrotron X-ray phase-contrast
microtomography (SR-uCT) and subsequent 3D image
processing with muscle and leverage analyses. Based on
these microscopical and microtomographical studies,
we present a thorough morphological, mechanical and
functional analysis of the musculoskeletal ovipositor
system (Additional file 2) that steers the various move-
ments executed by the female ichneumonid wasp dur-
ing oviposition.

Cuticular elements of the ovipositor

The paired 1st valvulae (1vv, Figs. 1a, ¢, e, 2a, b, ¢, f,
g, 4d) of V. canescens are terminally differentiated in
five apically directed sawteeth (st; Fig. 2b) of decreasing
size that are used to penetrate the substrate and the host’s
skin [42, 43]. Each of the 1st valvulae has a medioventral
part formed into a thickened longitudinal flap that pro-
jects inwards into the egg canal (Ifl; Fig. 3a; =
medio-ventral seal sensu [16]). These thin chitinuous flaps
are considered to effectively seal the crack between the 1st
valvulae and prevent the loss of venom and/or oviposition
fluid during oviposition [11, 44—46]. The pressure of the
venom squeezes the two membranes together and thus
closes the seal. A transverse flap called the valvillus (vlv;
Fig. 2e) protrudes from their medial walls and projects
into the central egg/venom canal (cf. [32]). Segregate val-
villi are typical for taxa of Ichneumonoidea but vary in
shape and number between subfamilies [11, 46]. In
non-aculeate Hymenoptera, they potentially serve as a
stop and release mechanism for the egg by maintaining
the egg in position within the terebra and blocking the egg
canal [32, 43, 46] or by pushing fluids into the ovipositor,
thereby creating a hydrostatic pressure that forces the egg
out of the terminal portion of the egg canal [43]. The
internal microsculpture of the medial walls of the egg
canal consists of distally oriented scale-like structures;
leaf-like ctenidia (ct; Fig. 2f) occur from the proximal
basis of the valvulae to the further distally positioned
region of the valvillus, where they are replaced by
spine-like subctenidial setae (scts; Fig. 2g). The cten-
idia help to push the deformable egg along the egg
canal by alternate movements of the 1st valvulae and
prevent it from moving backwards [43, 46, 47]. They
are also hypothesized to deliver forward a liquid lu-
bricant for the moving valvulae and thus reduce
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Fig. 1 SEM images of Venturia canescens. a The posterior part of the metasoma (lateral view) with the exhibited ovipositor that consists of the
female T9, two pairs of valvifers and three pairs of valvulae. Because of the storage in ethanol and the drying procedure, the 3rd valvulae are coiled
and do not embrace the terebra (formed by the interlocked 1st and 2nd valvulae) as in living animals (left is anterior). b Habitus image of V. canescens
(lateral aspect). c—e Ovipositor excised from the genital chamber (left is anterior; ¢, lateral view; d, dorsolateral view; e, ventral view), so that the
articulations of the 1st valvifer and the female T9 (tergo-valvifer articulation) and of the 1st valvifer with the 2nd valvifer (intervalvifer articulation)
become visible. The dorsal rami of the 1st valvulae are continuous with the 1st valvifers. The fat arrows represent the direction of view of the other
SEM images. f-g Detailed images of the tergo-valvifer and the intervalvifer articulation (lateral view, left is anterior) and the sensillar patch of the 2nd
valvifer (in g). Abbreviations: 1vf, 1st valvifer; 1w, Tst valvula; 2vf, 2nd valvifer; 2vv, 2nd valvula; 3w, 3rd valvula; dr1, Dorsal ramus of the 1st valvula; iar,
Interarticular ridge of the 1st valvifer; iva, Intervalvifer articulation; sp, Sensillar patch of the 2nd valvifer; T6, 6th abdimonal tergum; T7, 7th abdominal
tergum; T8, 8th abdominal tergum; T9, Female T9; T10, 10th abdominal tergum; tva, Tergo-valvifer articulation
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Fig. 2 SEM images of Venturia canescens (left is anterior). a, b The apex of the terebra (a, lateral view; b, ventral view; for a transverse section see
Fig. 3) showing the notch and the rhachis, which ends at the very apex of the 2nd valvula, and five sawteeth directed apically and decreasing in
size apically on each of the 1st valvulae. The valvulae bear various types of sensilla with the campaniform sensilla being numerous at the apices
of both the 1st and the 2nd valvulae. ¢ Upon removal of the 1st valvulae, the rhachises at the ventral side of the 2nd valvula become visible
(ventrolateral view). d The rhachises show distally directed scales/serrations. @ The inner surface of the apex of the right 1st valvula shows a single
valvillus and the aulax. f, g The egg canal formed by the 1st and 2nd valvifers bears a microsculpture consisting of distally oriented ctenidia (f),
which become further distally replaced by spine-like subctenidial setae (g) at the apex of the terebra. The aulaces of the 1st valvulae, similar to
the rhachis, show distally oriented scales. The fat arrow in a represents the direction of view of the image in b. Abbreviations: Tvv, 1st valvula; 2vv,
2nd valvula; au, Aulax; cs, Campaniform sensilla; ct, Ctenidium; no, Notch; rh, Rhachis; sc, Scales; scts, Subctenidial setae; st, Sawtooth; vlv, Valvillus

friction between the valvulae during oviposition [42,
45, 46, 48].

The 2nd valvula (2vv; Figs. 1a, ¢, 2a, b, ¢, d, 4d) is
bulbous at its proximal end and basally articulated
with the 2nd valvifers via the basal articulation (ba;
Fig. 4i; blue region in Fig. 3). There are openings on
each of the dorsolateral sides of the bulbs that presum-
ably enable the passage of eggs, venom and other

fluids. The dorsal ramus of the 2nd valvula extends
along its dorsal margin and bears the processus articu-
laris (pra; Fig. 5h) laterally at its proximal part (anter-
ior) and the processus musculares (prm; Fig. 5h)
dorsally. On its ventral side, the 2nd valvula bears the
rhachises (rh; Fig. 2b, ¢, d), which are interlocked with
both the aulaces (au; Fig. 2e, f, g) on the dorsal side of
the opposing paired 1st valvulae via the olistheter
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Fig. 3 SR-uCT images of the terebra of Venturia canescens. a 3D visualization of the whole terebra in the metasoma. b Virtual cross sections

100 pm

through the terebra from proximal to distal. Proximal (blue); every 65 pum, a cross section is displayed because of strong morphological changes
such as the bulbous proximal end of the 2nd valvula. According to the limited morphological changes along the longitudinal axis, for the next
part (green), a cross section is shown only every 260 um over the next 3380 um. The most distal 900 um (red) shows, once again, large morphological
variations such as the spindle-shaped cavity formed by all three valvulae; therefore, a cross section is shown every 65 um. The arrows indicate the

undivided distal parts of the 2nd valvula. Abbreviations: 1

w, Tst valvula; 2vf, 2nd valvifer; 2vv, 2nd valvula; 3vv, 3rd valvulae; blb, Bulb; ec, Egg canal; If1,
Longitudinal flap of the 1st valvula; nm, Notal membrane; ssc, Spindle-shaped cavity; trb, Terebra

system (oth; Fig. 4h,), which extends all the way to the
apex. The 2nd valvula of V. canescens and other ich-
neumonids (e.g. taxa belonging to the subfamilies of
Campopleginae, Cremastinae, Ctenopelmatinae, Neor-
hacodinae and Tryphoninae) consists of two halves that
are joined together for the most of their length by a
dorsal notal membrane (nm; Fig. 3a; cf. [32, 45]) but
are fused at the apex [11], so that the 2nd valvula pos-
sesses a lumen that is undivided at the apex of the tere-
bra (arrows in red region of Fig. 3b) but that splits into
two lumina for a substantial proportion of its proximal
part. The blunt tip of the 2nd valvula dorsally possesses
a distal notch (no; Fig. 2a, c), which is assumed to be
associated with moderating penetration of the host cu-
ticle [42] or to maintain a grip on the inner surface of
the host cuticle and thereby providing a momentary
clasping mechanism in the host’s skin to ensure con-
tinuous engagement with the host during oviposition [43].
Almost all ichneumonid species with a pre-apical notch
are larval endoparasitoids of holometabolous insects [43].
At their external surface, both the 1st and the 2nd valvulae
of V. canescens exhibit canpaniform sensilla (cs; Fig. 2b),

which are concentrated at the apices of the valvulae, espe-
cially distally of the distal notch of the 2nd valvula and
posteriorly of the sawteeth of the 1st valvulae (cf. [45]).
However, the sensillar equipment of the terebra was not
further investigated in this study (but see [49]).

The terebra (trb; Fig. 1b, 3) consists of the paired
1st valvulae and the 2nd valvula, which are tightly
interlocked by the olistheter (oth; Fig. 4h,). The dis-
tally directed scales/serrations on the surfaces of both
the rhachises and the walls of the aulaces (sc; Fig. 2d, f,
g) potentially reduce friction forces by minimizing the
contact area of the olistheter elements [46]. However,
we hypothesize that these scales might also serve other
functions: (1) they, analogous to the ctenidia, might
forward a liquid lubricant from the metasoma to the
apex of the olistheter system to reduce friction be-
tween the moving valvulae (cf. [48]), and/or (2) they
might create anisotropic conditions in the olistheter by
increasing frictional forces whenever a valvula is
pushed in proximal direction, thereby preventing the
1st valvulae from randomly sliding back during pier-
cing/drilling. The terebra extends far beyond the tip of
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Fig. 4 Segmented 3D model of the structures involved in the ovipositior movements in Venturia canescens. a, b Cuticular elements and muscles
of the ovipositor (a, medial view, left is anterior; b lateral view, left is posterior). € Muscles involved (the cuticular structures are semi-transparent):
1st valvifer-genital membrane muscle (grey); anterior 2nd valvifer-2nd valvula muscle (pink); posterior 2nd valvifer-2nd valvula muscle (dark green);
dorsal T9-2nd valvifer muscle part a (light green); dorsal T9-2nd valvifer muscle part b (olive); ventral T9-2nd valvifer muscle (blue); posterior T9-2nd
valvifer muscle (cyan). d Selected cuticular elements involved (the ovipositor muscles are semi-transparent): 1st valvifer (orange); 2nd valvifer (yellow);
1st valvulae (pink); 2nd valvula (purple). The 3rd valvulae are not shown here. ej Joints involved with their degrees of freedom depicted as dashed
arrows. e Cuticular elements of the ovipositor and their inherent structures. f Enlarged view of rotation joints between the 1st valvifer and the 2nd
valvifer (intervalvifer articulation) and between the 1st valvifer and female T9 (tergo-valvifer articulation). g Joints with assumed rotation and translation
degree of freedom between the 2nd valvifer and the female T9 (assumed movements indicated by white dashed arrows, assumed rotation angle by
white dashed lines). h Translational joints with tongue and groove connection between the dorsal rami of the 1st valvula and the dorsal projection of
the 2nd valvifer (hy; image of the SR-uCT data stack; location of the virtual cross section is indicated in e by small number 1), and between the 1st and
the 2nd valvulae via the olistheter system: the tonge-like rhachises on the ventral surface of the 2nd valvula and the corresponding grooves called
aulaces along the dorsal surface of each on each of the 1st valvulae (h,; image of the SR-uCT data stack; location of the virtual cross section is
indicated in e by small number 2). i Rotational joint between the 2nd valvifer and the 2nd valvula called the basal articulation (the valvifers
and the female T9 are semi-transparent). j Joints and movements enabled by the 1st valvifer, which acts as a lever. Abbreviations: 1vf, 1st valvifer; Twv, Tst
valvula; 2vf, 2nd valvifer; 2vv, 2nd valvula; af9, Anterior flange of T9; asdf, Anterior section of the dorsal flange of the 2nd valvifer; ba, Basal articulation;
bl, Basal line; blb, Bulb; ca, Cordate apodeme; dp2, Dorsal projection of the 2nd valvifer; dr1, Dorsal ramus of the 1st valvula; ec, Egg canal; hsl, Hook-
shaped lobe of the 2nd valvifer; iar, Interarticular ridge of the 1st valvifer; iva, Intervalvifer articulation; m1, 1st valvifer-genital membrane muscle; m2,
Anterior 2nd valvifer-2nd valvula muscle; m3, Posterior 2nd valvifer-2nd valvula muscle; mda, Dorsal T9-2nd valvifer muscle part a; m4b, Dorsal T9-2nd
valvifer muscle part b; m5, Ventral T9-2nd valvifer muscle; m6, Posterior T9-2nd valvifer muscle; mb2, Median bridge of the 2nd valvifers; oth, Olistheter,
psdf, Posterior section of the dorsal flange of the 2nd valvifer; T9, Female T9; tmdb, Tendon of the dorsal T9-2nd valvifer muscle part b; tva,
Tergo-valvifer articulation

the metasoma. The diameter of the terebra decreases (Fig. 3b). The egg canal is largely defined by the 1st
from the proximal to its distal end, although the part valvulae but its dorsal side is formed by the 2nd val-
in between remains similar in diameter throughout. vula (ec; Fig. 3a). At the apex of the terebra, the 1st
The cross sections of both the 1st and the 2nd valvulae  valvulae are enlarged and form an approximately
are notably different across the length of the terebra  spindle-shaped cavity (ssc; red region in Fig. 3) that is
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Fig. 5 (See legend on next page.)
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(See figure on previous page.)

Fig. 5 Mechanics of the musculoskeletal ovipositor system of Ventuia canescens. a-g, i Kinematics of the musculoskeletal ovipositor system; acting
(input) muscle forces are visualized by solid red arrows (b, d, f, g, i) and resulting (output) movements by solid black arrows (c, e, g, i). a-g, j-m 3D
model of the ovipositor system (medial view, left is anterior). b m1 potentially serves as a tensor muscle for stabilization of the ovipositor system
during oviposition. ¢, d, i Contraction of both m4a and m4b (F, in d, i) moves the 2nd valvifer posteriorly and the female T9 anteriorly towards each
other (small number 3 in ¢, i), thus indirectly causing the 1st valvifer to tilt anteriorly (small number 4 in ¢, i). This is possible because the 1st valvifer is
articulated with both the 2nd valvifer and the female T9 via the intervalvifer and tergo-valvifer articulations that act as rotational joints. The 1st valvifer
thereby functions as a lever arm that transfers the movement to the dorsal ramus of the 1st valvula and consequently causes the 1st valvula to slide
distally relative to the 2nd valvula (small number 5 in c). These movements might also facilitate the extension of the terebra back towards its resting
position (c). m6 thereby stabilizes the ovipositor system by holding the 2nd valvifer and the female T9 in position and preventing them to rotate
around the articulations (d). e, f, i Contraction of m5 (Fs in f, i) moves the 2nd valvifer anteriorly and the female T9 posteriorly apart from each other
(small number 6 in e, i), thus causing the 1st valvifer to tilt posteriorly (small number 7 in e,i) and consequently causing the 1st valvula to slide
proximally relative to the 2nd valvula (small number 8 in e). These movements might also facilitate the flexion of the terebra (e). g, i Contraction of m3
(F3 in g, i) causes the bulbs to pivot anteriorly at the basal articulation, thus flexing the 2nd valvula and, therefore, the whole terebra (small number 2
in g, i). Contraction of m2 (F, in g, i) extends the terebra back towards its resting position (small number 1 in g, i). h Light microscopical image of the
insertion regions of m2 and m3 at the processus articularis and the processus musculares, respectively (lateral view, left is anterior). The duct of the
venom gland reservoir of the 2nd valvifer ends at the lateral openings of the bulbous region of the 2nd valvula. i Resulting schematic drawing of the
mechanism of the tilting movements of the 1st valvifer and of the flexion/extension of the terebra (lateral view, left is anterior, not to scale). Only the
two pairs of antagonistically acting muscles that are mainly responsible for these movements are represented in simplified terms (m2/m3 and m4/mb5).
The muscles stabilizing the system (m1 and mé) are not depicted here. j-m Simplified mechanical scheme of the leverages of the ovipositor in the
resting position; acting (input) muscle forces are visualized by solid red arrows, their horizontal force vector components and the resulting (output)
forces by thin red arrows (j, k), the anatomical (in)levers by solid black lines and the effective (= mechanical) levers by thin black lines, and the joint
angles (a, B, €) are given (k, m). j, | Major direction of the acting muscle forces (F,, f5, F4 and Fs) from a muscle’s insertion point to the centre point of
its origin. j, k Under the simplified assumption that the 2nd valvifer, which acts as the frame of reference, and the female T9 are guided and cannot
twist but only move towards or apart from each other along the horizontal anterior-posterior axis, the input force vectors F4, and Fs, act horizontally
at the 1st valvifer at the tergo-valvifer-articulation. The distance between the tergo-valvifer articulation (where the force is applied) and the intervalvifer
articulation (joint axis/pivot point) is the anatomical inlever ¢; for torques see egs. 4, 5. The 1st valvifer acts as a lever with the effective outlever d’,
resulting in pro- or retraction forces at the dorsal ramus of the 1st valvula Fy4 and Fiyys; See egs. 6, 7.1, m Input force vectors F, and 5 acting at the
proximal end of the 2nd valvula with the basal articulation as joint axis and the anatomical inlevers a and b; for torques see egs. 2, 3. n Schema of a
female wasp flexing its terebra to an active position for oviposition (after [32]) (Additional file 1), which might be supported by the flexible 3rd valvulae
(not shown in a—m). Abbreviations: 1vf, 1st valvifer; 1wy, Tst valvula; 2vf, 2nd valvifer; 2vv, 2nd valvula; 3w, 3rd valvua; ba, Basal articulation; blb, Bulb;
dr1, Dorsal ramus of the 1st valvifer; F, Force; F,, Horizontal vector components of a force; iva, Intervalvifer articulation; m1, 1st valvifer-genital
membrane muscle; m2, Anterior 2nd valvifer-2nd valvula muscle; m3, Posterior 2nd valvifer-2nd valvula muscle; m4a, Dorsal T9-2nd valvifer
muscle part a; m4b, Dorsal T9-2nd valvifer muscle part b; m5, Ventral T9-2nd valvifer muscle; m6, Posterior T9-2nd valvifer muscle; pra,
Processus articularis; prm, Processus musculares; T9, Female T9; trb, Terebra; tva, Tergo-valvifer articulation; vd, Duct of the venom gland
reservoir of the 2nd valfiver

partly occluded by the valvilli of each of the 1st valvu-
lae (cf. [32]).

The paired 3rd valvulae (3vv; Figs. 1a, ¢, e, 3) emerge
at the posterior end of the 2nd valvifer and ensheath
and protect the terebra when at rest. The lateral walls
of the 3rd valvulae of V. canescens and other parasitoid
wasps with long external terebrae are annulated by fine
transversal narrow furrows (cf. [50]), which makes them
flexible and allow their extensive deformation during
oviposition. Since the valvulae lack intrinsic muscles,
deformation must arise as a passive response to exter-
nal pressures. The ability to bend the 3rd valvulae facil-
itates oviposition [50], however, it is not yet clear if V.
canescens is able to support the flexion of the terebra
towards an active probing position and its steering dur-
ing the search for a potential host with their 3rd valvu-
lae or if they simply follow the movements of the
terebra (Fig. 5n; Additional file 1; cf. [32]). The distally
directed dense microsetae on the inner surface of the
3rd valvulae (cf. [45]) are thought to be involved in
cleaning the ovipositor sensilla between oviposition

episodes [2, 12, 50]. The 3rd valvulae potentially also
have a sensory function [1].

The paired 1st valvifers (1vf; Figs. 1a, ¢, d, f, g, 4b, d, j) of
V. canescens and other ichneumonid species are short
and show an almost oblong shape (with rounded
edges) [8], unlike the bow-shaped 1st valvifers of spe-
cies of Chalcidoidea [21, 23-26] or the triangularly
shaped 1st valvifers of species of Apoidea [8, 9, 51, 52].
The posterior angles of the 1st valvifer are doubly
movably articulated with the modified female T9 via
the tergo-valvifer articulation and via its posteroventral
corner with the 2nd valfiver by means of the intervalvi-
fer articulation (tva/iva; Figs. 1c, £, g, 4f, j). A strength-
ened ridge called the interarticular ridge (iar; Figs. 1f,
4f) occurs between the two articulations and might
mechanically stabilize the 1st valvifer during ovipos-
ition. The anterodorsal angle of the 1st valvifer is con-
tinuous with the dorsal ramus of the 1st valvula (drl;
Figs. 1c, d, f, 4h;, i, j), which is interlocked with the
dorsal projection of the 2nd valvifer (dp2; Fig. 4e, h;)
by a system analogous to the olistheter. This tight
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interlocking guides the dorsal rami and prevents them
from buckling when pushing forces are applied during
the protraction of the 1st valvulae. The rami make
acute angles around the proximal bulbous end of the
2nd valvula. The cuticle in the part of the dorsal rami
that slides around the angle during pro- or retraction
of the 1st valvulae needs to be flexible in the sagittal
plane and might contain high proportions of the very
elastic rubber-like protein resilin (cf. [53-55]).

The paired 2nd valvifers (2vf; Fig. 1a, ¢, ¢, f, g, 4b, d)
are elongated and their posterior parts are placed medi-
ally of the female T9. A conjunctiva, called the genital
membrane (not shown), connects the ventral margins
of both the 2nd valvifers arching above the 2nd valvula.
The 2nd valvifer bears the dorsal flange, which extends
upon its dorsal margin and which is divided by a
sharply defined ridge called the basal line (bl; Fig. 4e)
into an anterior and a posterior section. The anterior
section of the dorsal flange of the 2nd valvifer (asdf;
Fig. 4e) dorsally bears the dorsal projection of the 2nd
valvifer (dp2; Fig. 4e, h;) and extends upwards in a
hook-shaped lobe (hsl; Fig. 4e; sensu [8]) at its postero-
dorsal end, which might allow a greater arc of move-
ment of the 1st valvifer and therefore a greater
protraction of the 1st valvulae. The dorsal margins and
the dorsal flanges are strengthened by cuticular ridges
that might have a stabilizing function to prevent de-
formation. Sensillar patches (sp; Fig. 1g) can be seen on
the 2nd valvifer near the intervalvifer and the basal ar-
ticulation (cf. [56]), monitoring the movements of the
1st vlavifer and therefore the connected 1st valvula or
the position of the bulbs of the 2nd valvula. The poster-
ior section of the dorsal flange of the 2nd valvifer (psdf;
Fig. 4e) is elongated and oriented almost vertically. At
their posterodorsal ends, the 2nd valvifers are con-
nected by the median bridge (mb2; Fig. 4€). The duct of
the venom gland reservoir (vd; Fig. 5h) is situated in
between the paired 2nd valvifers.

The female T9 (T9; Figs. 1a, ¢, e, f, g, 4b, d) is
elongated and anterodorsally bears a hook-shaped
structure. Medially at its anterior end, the T9 forms
a funnel-like structure at the cordate apodeme (ca;
Fig. 4e, f, g), situated posteriorly to the tergo-valvifer
articulation. This structure has not yet been de-
scribed in parasitoid hymenopterans. The anterodor-
sal and dorsal margins of the female T9 is
strengthened by the anterior flange of T9 (af9; Fig. 4e) that
might mechanically stabilize the female T9 during
oviposition.

Joints of the musculoskeletal ovipositor system
The musculoskeletal ovipositor system possesses three
main joints.

Page 9 of 25

The basal articulation (ba; Fig. 4i) connects the lat-
erally placed bulbs of the 2nd valvula with the thickened
anteroventral parts of the 2nd valvifers via a rotational
joint. This joint might also allow some limited pivoting
movements of the 2nd valvula and therefore of the
whole terebra.

Both the 2nd valvifer and the female T9 are con-
nected with the 1st valvifer by the intervalvifer articu-
lation and the tergo-valvifer articulation (iva/tva;
Figs. 1c, f, g, 4f, j), respectively, forming a double joint.
The tergo-valvifer articulation is situated dorsal to the
intervalvifer articulation. Both of these articulations act
as rotational joints; thus, the 1st valvifer is movable in
the sagittal plane only.

Ovipositor muscles

The maximum tensions at constant muscle length (iso-
metric tension) that individual insect muscles can exert
greatly vary between species, ranging from 19 to
700 kPa [57, 58] (e.g. approximately 38 kPa exerted by
the asynchronous dorso—ventral flight muscle in Bombus
terrestris (Linnaeus, 1758) at 30 °C [59]). In case of par-
allel muscle fibres, the maximum force (F) created by a
muscle can be estimated by using the specific tension (f)
and the mean cross section area (CSA; Table 1) accord-
ing to the equation:

F=CSA - f (eq. 1)

However, there are, to the best of our knowledge,
no studies hitherto that measured tensions of abdom-
inal muscles of hymenopterans we could refer to.

The ovipositor of V. canescens possesses a set of six
paired muscles (Fig. 4c; Table 1), one of them (m4)
forming two distinct bundles.

The paired 1st valvifer-genital membrane muscles
(ml) are the only muscles of the 1st valvifer. They
originate at the medial surface of the posteroventral
part of the 1st valvifer, i.e. between the tergo-valvifer
and the intervalvifer articulation, and insert anteriorly
on the genital membrane. They are the smallest mus-
cles of the ovipositor with a CSA of 0.0008 mm? each
(Table 1).

The paired fan-shaped anterior 2nd valvifer-2nd
valvula muscles (m2) arise at the medial region along
the anterodorsal part of the 2nd valvifer, largely at the
anterior section of the dorsal flange (asdf; Fig. 4e), and
insert at the processus articularis (pra; Fig. 5h), a
process that extends laterally from the proximal part
of the 2nd valvula to form the medial part of the
basal articulation. These muscles have a CSA of
0.0032 mm? each (Table 1).

The paired posterior 2nd valvifer-2nd valvula
muscles (m3) originate at the medial region along the
ventral part of the 2nd valvifer and insert at the
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processus musculares (prm; Fig. 5h), namely the apo-
deme that extends dorsally from the proximal part of
the 2nd valvula to the genital membrane. These mus-
cles have a CSA of 0.0039 mm? which is similar to
that of m2 (Table 1).

The paired dorsal T9-2nd valvifer muscles (m4a/
b) are modified in their insertion and form two dis-
tinct muscle bundles, as it is also known to occur in
the ichneumonid genus Megarhyssa Ashmead, 1858
[8, 60]. One part of these muscles (m4a) arises at the
lateral region along the posterodorsal part of the an-
terior margin of female T9 and inserts at the anterior
section of the dorsal flange of the 2nd valvifer (asdf;
Fig. 4e) and partly on the hook-shaped lobe of the
2nd valvifer (hsl; Fig. 4e). The other part (m4b) is
fan-shaped and originates at the medial region along
the posterodorsal part of the anterior margin of fe-
male T9. The muscle tendons (tm4b; Fig. 4f, g) also
insert at the anterior section of the dorsal flange of
the 2nd valvifer, ventrally to the insertion region of
m4a. The tendon of m4b thereby traverses the
funnel-like structure at the cordate apodeme (ca; Fig.
4f, g) of the female T9. Muscles m4a and m4b are
long thick muscles with a CSA of 0.0050 mm” and
0.0039 mm?, respectively (Table 1).

The paired ventral T9-2nd valvifer muscles (mb5)
arise from the medial region of the anterodorsal part of
the female T9, partly at the funnel-like structure at the
cordate apodeme (ca; Fig. 4f, g), and insert along the
posterior section of the dorsal flange of the 2nd valvifer
(psdf; Fig. 4e). These are the largest ovipositor muscles
with a CSA of 0.0077 mm?>.

The paired posterior T9-2nd valvifer muscles (m6)
arise medially at the posterodorsal part of the female
T9 and insert at the median bridge of the 2nd
valvifers (mb2; Fig. 4e). They are the second smallest
muscles of the ovipositor with a CSA of 0.0015 mm?
(Table 1).

The literature concerning the musculoskeletal ovi-
positor system of ichneumonoid wasps is limited and
some inconsistent statements have been made about
certain ovipositor muscles. We describe the 1st
valvifer-genital membrane muscle for the first time in
an ichneumonoid species. Either this small muscle is
not present in all ichneumonoid species or, more
likely, previous authors (e.g. [8, 60]) might have over-
looked its presence. In Megarhyssa macrurus lunator
(Fabricius, 1781) (Hymenoptera: Ichneumonidae), Ab-
bott [60] described the 1st valvifer-2nd valvifer muscle
as ‘a small muscle connecting the “runner” plate [=
2nd valvifer] with the dorsal margin of the “kidney”
plate [= 1st valvifer]. However, this muscle has nei-
ther been found in Megarhyssa atrata (Fabricius,
1781) (Hymenoptera: Ichneumonidae) by Snodgrass
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[8] nor in V. canescens in the present study and
might have been mistaken for the anterior 2nd
valvifer-2nd valvula (m2) muscle by this author.

In general, the musculoskeletal ovipositor system of
ichneumonoid wasps is similar to that of the parasit-
oid hymenopteran species belonging to Ceraphronoi-
dea [19], a superfamily that is closely related to
Ichneumonoidea [61]. However, the ceraphronoids
lack the anterior 2nd valvifer-2nd valvula muscle [19]
that is present in V. canescens and other ichneumo-
nids. All chalcidoid species investigated to date with
regard to the ovipositor muscles (Agaonidae [26],
Aphelinidae [27], Chalcididae [20], Eurytomidae [23],
Pteromalidae [21, 25] and Torymidae [24]) comprise
the same set of muscles as ichneumonids but lack the
1st valvifer-genital membrane muscle. All the taxa of
Chalcidoidea, Ceraphronoidea and Ichneumonoidea
investigated hitherto (including our study of V. canes-
cens) lack the 1st valvifer-2nd valvifer muscle, lateral
T9-2nd valvifer muscle, 2nd valvifer-genital membrane
muscle and T9-genital membrane muscle, which have
been described in other hymenopteran taxa [7].

Mechanics and mode of function of the musculoskeletal
ovipositor system

The set of six paired ovipositor muscles in V. canes-
cens (Fig. 4c; Table 1) comprises two pairs of two an-
tagonistically working muscles that are mainly
responsible for the various ovipositor movements, and
two muscles stabilizing the musculoskeletal system.
Based on the following functional model, we assume
that the anterior (m2) and the antagonistically acting
posterior 2nd valvifer-2nd valvula muscles (m3) ex-
tend or flex the terebra, whereas the two parts of the
dorsal T9-2nd valvifer (m4a/b) and the antagonistic-
ally acting ventral T9-2nd valvifer muscle (m5) indir-
ectly protract or retract the 1st wvalvulae. The
relatively small 1st valvifer-genital membrane muscle
(ml) and the posterior T9-2nd valvifer muscle (m6)
might predominantly serve for the stabilization of the
ovipositor system during oviposition.

Flexion and extension of the terebra

The 2nd valvula of V. canescens is connected with
the 2nd valvifers by a rotational joint called the basal
articulation (ba; Figs. 4i, 5h, i, I, m). Two antagonis-
tic muscles (m2, m3) insert at the bulbous region
around this articulation (Fig. 5h). The insertion re-
gion of the posterior 2nd valvifer-2nd valvula muscle
(m3) at the 2nd valvula is located dorsally of the
basal articulation, whereas its region of origin at the
2nd valvifer is located posteroventrally to it. There-
fore, a contraction of m3 (F3; Fig. 5g, i) causes the
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bulbs (blb; Fig. 4e, i) to pivot anteriorly at the basal
articulation. This leads to a flexion of the 2nd valvula
and the interlocked 1st valvulae from its resting pos-
ition between the paired 3rd valvulae towards an ac-
tive probing position (small number 2; Fig. 5g, i
Table 1). An alternate contraction of m3 on either
side might also cause the terebra to rotate to a cer-
tain degree. The insertion region of the anterior 2nd
valvifer-2nd valvula muscle (m2) at the 2nd valvula is
situated posteroventrally of both the basal articulation
and the insertion region of m3, whereas its origin at
the 2nd valvifer is located posterodorsally of the ar-
ticulation. Hence, when m2 (F,; Fig. 5g, i) contracts,
the terebra is extended towards its resting position
(small number 1; Fig. 5g, i; Table 1).

The anatomical cluster comprising the 2nd valvifer,
the 2nd valvula and the two muscles connecting them
(Fig. 51) is a simple mechanical system in which the
2nd valvula is a two-armed class 1 lever. The ratio of
the anatomical inlevers (a = 66 um and b = 84 pm; Fig.
5m) is 1:1.27. The torques (M) of the muscle forces of
the anterior and posterior 2nd valvifer-2nd valvula
muscle (F, and F3) on the basal articulation in the rest-
ing position can be estimated by using the maximum
force of the muscle (F; cf. eq. 1), the lengths of the
anatomical inlever arms and the attachment angles of
the muscles at the 2nd valvula (a =154° and f5 =96
Fig. 5m) according to the equations:

My =F, - a - sin(a) (eq. 2)

Mz =F;-b-sin(f) (eq. 3)

However, the lengths of the effective (= mechanical)
inlever arms (a’ and b’; Fig. 5m) vary greatly with at-
tachment angle (joint angle), i.e. during the flexion or
extension of the terebra. The attachment angle of m3
in the resting position is almost 90° thus, the effect-
ive inlever arm is almost optimal, so that the force of
m3 can be optimally transmitted to the 2nd valvula,
which leads to a high torque. By contrast, the attach-
ment angle of m2 in the resting position is far below
90° but increases when the wasp flexes its terebra to-
wards the active probing position. This results in an
increase in length of the effective inlever arm, an op-
timal force transmission of m2 at the basal articula-
tion and consequently a high torque. High torques at
the basal articulation might be crucial to enable the
extensive movements for both the flexion and exten-
sion of the terebra, despite the relatively small ana-
tomical inlevers.

Pro- and retraction of the 1st valvulae

Three muscles (m4—-m6) connect the 2nd valvifer
with the female T9, both these structures being con-
nected with the 1st valvifer by the intervalvifer
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articulation or the tergo-valvifer articulation (iva/tva;
1c, £, g, 4f, j, 5i-k), forming a double joint. The inser-
tion regions at the 2nd valvifer of both parts of the
dorsal T9-2nd valvifer muscle (m4a/b) lie anterodor-
sally, whereas the regions of origin at the female T9
are posterodorsally located of both articulations. A
contraction of m4a and m4b (Fy Fig. 5d, i) moves
the 2nd valvifer posteriorly and the female T9 anteri-
orly towards each other (small number 3; Fig. 5c, i),
whereby the tension of the posterior T9-2nd valvifer
muscle (m6) presumably prevents the involved cuticu-
lar elements to rotate around the articulations. This
movement causes the 1st valvifer to tilt anteriorly
(small number 4; Fig. 5c, i) because it is articulated
with both the 2nd valvifer and the female T9 via rota-
tional joints (intervalvifer and tergo-valvifer articula-
tion). The 1st valvifer acts as a one-armed class 3
lever that transfers its tilting movement to the dorsal
ramus of the 1st valvula, causing the 1st valvula to
slide distally relative to the 2nd valvula (small number
5; Fig. 5¢). Both m4a and m4b act as protractors of
the 1st valvulae (Table 1). They might also assist in
extending the terebra (Fig. 5¢), as a simultaneous pro-
traction of the 1st valvulae places the terebra under
unilateral tension due to friction between the olisth-
eter elements of the 1st and 2nd valvulae. The origin
of the antagonistic ventral T9-2nd valvifer muscle
(m5) at the female T9 is situated posterodorsally near
the intervalvifer articulation and posterior to the
tergo-valvifer articulation, whereas its insertion region
at the 2nd valvifer is located posteroventrally of both
these articulations. Its contraction (Fs5 Fig. 5f i)
moves the 2nd valvifer anteriorly with respect to the
female T9 (small number 6; Fig. 5e, i), thus indirectly
causing the 1st valvifer to tilt posteriorly (small num-
ber 7; Fig. 5e, i) and the 1st valvulae, as a direct con-
sequence, to slide proximally relative to the 2nd
valvula (small number 8; Fig. 5e). Therefore, m5 acts
as a retractor of the 1st valvulae (Table 1). It might
also assist in flexing the terebra (Fig. 5e), as a simul-
taneous retraction of both of the 1st valvulae places
the terebra under a unilateral tension due to friction
between the olistheter elements of the 1st and 2nd
valvulae. Muscles m4a and m4b act antagonistically
against mb5, ie. mda/b protract the 1st valvulae,
whereas m5 retracts them. The posterior T9-2nd val-
vifer muscle (m6) stabilizes the ovipositor system by
holding the 2nd valvifer and the female T9 in position
and prevents them to rotate around the articulations
(Fig. 5d; Table 1), although some limited movements
in dorso—ventral direction at their posterior ends are
likely to occur (cf. Fig. 4g).

The following assumptions were made for a simpli-
fied estimation of the torques (M) of the muscle
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forces of the dorsal and ventral T9-2nd valvifer
muscle (F, and Fs): (1) The 2nd valvifer acts as the
frame of reference; therefore, the intervalvifer articu-
lation (iva; Figs. 1lc, f, g, 4f, j, 5i, j, k) acts as the
pivot point (= joint axis or fulcrum) at which the 1st
valvifer tilts; and (2) the 2nd valvifer and the female
T9 are guided and cannot twist around the articula-
tions but only move towards to or apart from each
other along the horizontal anterior—posterior axis
without friction occurring. Under these assumptions,
the horizontal force vector components of m4 and
mb5 (Fy, =cos(y) - F4 and Fs, =cos(d) - F5 with y=5°
and §=24° Fig. 5j, k) act at the 1st valvifer at the
tergo-valvifer articulation (tva; Figs. 1c, f, 4f, j, 5i, j,
k). Therefore, the torque (M) of F,, and Fs, on the
intervalvifer articulation in the resting position can be
estimated by using the horizontal vector component
(F,) of the maximum force of a muscle (cf. eq. 1),
the length of the anatomical inlever arm (c =103 pm;
Fig. 5k)—which is the distance between tergo-valvifer
and intervalvifer articulation—and the joint angle (e =
113°% Fig. 5k) according to the equations:

M, = F,, - c - sin(e) (eq. 4)

Ms = Fs, - ¢ - sin(e) (eq. 5)

The 1st valvifer acts as a lever with the effective out-
lever (d’; Fig. 5k), which is defined as the length be-
tween the intervalvifer articulation and the point
where the 1st valvifer continues as dorsal ramus of the
1st valvula. The resulting pro- or retracting forces at
the dorsal ramus of the 1st valvula (Fyypma and Fiyps;
Fig. 5k) can be estimated by using the horizontal vec-
tor components (F,) of the forces acting on the 1st
valvifer at the tergo-valvifer articulation, the length of
the effective inlever arm (¢’ =c - sin(e) = 94.8 um; Fig.
5k) and the effective outlever arm according to the
equations:

Fiwa=(Fax - )/ (eq. 6)

Fiys=(Fsx- ) /1 d (eq. 7)

The distance that the 1st valvifer moves is equally
transferred to the 1st valvula. Thereby, the shape of
the 1st valvifer and the positions of the tergo-valvifer
and the intervalvifer articulations influence the way
how the 1st valvula is moved, i.e. the more closely
the two articulations are situated to each other and
the further they are away from the anterior angle of
the 1st valvifer, the further the 1st valvula will slide
relative to the 2nd valvula along the olistheter [19].
An increase of the quotient of the effective outlever
to the effective inlever (d: ¢’ ratio) results in a
smaller force output but an increase in the potential
maximum velocity and mechanical deflection, ie. an
increase in the speed and the movement distance of
the dorsal rami of the 1st valvulae. Their tight inter-
locking with the dorsal projection of the 2nd valvifer
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prevents them from buckling and transfers the move-
ments to the apex of the valvulae. The double joint
system of the 1st valvifer enables an pro- and retrac-
tion of the 1st valvulae.

The 1st valvifer-genital membrane muscle (m1) po-
tentially serves as a tensor muscle that stabilizes the
1st valvifers during their fast alternate movements by
holding them in position laterally to the 2nd valvifers
(Fig. 5a, b; Table 1).

Process of oviposition

After a female wasp has found a suitable oviposition
site, the contraction of the posterior 2nd valvifer-2nd
valvula muscles (m3) causes the 2nd valvula and the
interlocked 1st valvulae to flex anteriorly towards the
active probing position [19]. This flexing and the gen-
eral employment of the terebra of V. canescens (as in
many other ichneumonoid wasp taxa [62, 63]) might
be assisted by the annulated and flexible 3rd valvulae
and the generally improved manoeuvrability of the
metasoma of the Apocrita [64]. The 2nd valvifer is
then rotated away from the dorsal surface of the
metasoma concomitantly with the terebra. During the
so-called cocking behaviour (sensu [32]) of V. canes-
cens, the 2nd valvifer and the terebra flex simultan-
eously. In V. canescens, this characteristic behaviour
is always performed prior to the actual oviposition
and is assumed to correlate with the egg being passed
down into the spindle-shaped cavity at the apex of
the terebra in readiness for oviposition [32, 45]. The
parasitoid then performs localized probing movements
with the unsheathed terebra in the substrate (Add-
itional file 1). Drilling movements of the terebra are
not needed, since the hosts of V. canescens live in
soft substrates. Once a suitable host is found, stab-
bing movements are conducted, whereby the terebra
is quickly inserted into the host caterpillar [32, 65].
Thereby, alternate contractions of the dorsal T9-2nd
valvifer muscles (m4a/b) and the ventral T9-2nd val-
vifer muscles (m5) indirectly execute the penetration
movements of the 1st valvulae (which are docu-
mented in a braconid wasp [66]). In some species of
Braconidae (the sister group of Ichneumonidae), these
movements of the 1st valvulae are known to enable
the wasps to actively steer their terebra to some ex-
tent: asymmetrical apex forces at the terebra in a vis-
cid medium—caused by varying its asymmetrical tip
by pro- or retracting one 1st valvula with respect to
the other—result in a passive bending of the terebra
[66], or restrictions in inter-element displacements
(e.g. strongly swollen short regions pre-apically on the
rhachises) cause the terebra to bend due to tensile
and compressive forces [67]. Throughout penetration,
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the relative position of the valvifers and consequently
of the 1st valvulae might be monitored via the sensil-
lar patches of the 2nd valvifers situated anteriorly to
the intervalvifer articulations. In addition to penetrat-
ing the substrate, the longitudinal alternate move-
ments of the 1st valvulae presumably serve to pass
the egg along the terebra. This is facilitated by the
egg canal microsculpture consisting of distally ori-
ented scales (ctenidia and subctenidial setae) that
push the egg towards the apex of the terebra and
hold it in position by preventing backward move-
ments [43, 46, 47]. Shah [45] suggests that the valvilli
assist in moving the egg in the terminal part of the
terebra by using hydrostatic pressure for a speedy de-
livery of the egg into the host. In V. canescens, the
laying of an egg into the haemocoel of the host cater-
pillar takes only a fraction of a second [32, 45]. After
oviposition and withdrawal of the terebra, the anterior
2nd valvifer-2nd valvula muscles (m2) extend the
terebra back towards its resting position between the
internal concave faces of the 3rd valvulae [10]. Ovi-
position is commonly followed by cleaning behaviour
during which the wasp especially grooms its antennae
and terebra.

Conclusions

The examination of the elements of the musculoskel-
etal ovipositor system of V. canescens and its under-
lying working mechanisms adds to our understanding
of a key feature in the evolution of parasitoid hyme-
nopterans, a feature that has impacted the evolutionary
success of ichneumonid wasps (with more than 24,000
described [68] and more than 100,000 estimated spe-
cies [69]) and parasitoid hymenopterans in general
(with 115,000 described and 680,000 estimated species
[70]). Whereas the basic organization of the ovipositor
is remarkably uniform among the Hymenoptera [8],
huge variations exist in its structure [9, 11, 12], which
are associated with the employment of the terebra in
the different taxa of parasitoid species (cf. [62, 63, 71,
72]). Further studies that combine thorough morpho-
logical analyses of a parasitoid’s musculoskeletal
ovipositor system with investigations of its parasitoid—
host interactions are needed in order to understand
how morpho-physiological traits have influenced the
evolution of behavioural, ecological and life history
traits and vice versa in the megadiverse parasitoid
Hymenoptera.

Methods

The V. canescens specimens used in this study origi-
nated from the thelytokous lab colony of Biologische
Beratung Ltd. (Berlin, Germany) from whom we also
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received larvae of the host Ephestia kuehniella Zeller,
1879 (Lepidoptera: Pyralidae). The wasps were kept in
a glass box (20 - 30 - 20 ¢cm) and reproduced after the
addition of several pyralid larvae within a mealy sub-
strate to the box every third week (Additional file 1).
Three times a week, the imagos were fed with watered
honey absorbed onto paper towels. The room was kept
at a constant temperature of 24°C.

Light microscopy (LM) and scanning electron microscopy
(SEM)

The ovipositor was excised and dissected from the geni-
tal chamber of ethanol-fixed animals by using fine for-
ceps, macerated in 10% aqueous potassium hydroxide
(KOH) for 12-15 h at room temperature if necessary,
cleaned in distilled water and dehydrated stepwise in
ethanol (C,HgO).

For light microscopy, specimens were mounted onto
microscopic slides (76 mm - 26 mm, VWR Inter-
national, Radnor, PA, USA), embedded in Euparal
(Waldeck GmbH & Co. KG, Miinster, Germany) and,
after drying, investigated with a light microscope of
the type Zeiss Axioplan (Carl Zeiss Microscopy
GmbH, Jena, Germany) equipped wit a Nikon D7100
single-lens reflex digital camera (Nikon Corporation,
Tokyo, Japan) and the software Helicon Remote ver-
sion 3.6.2.w (Helicon Soft Ltd., Kharkiv, Ukraine) (for
focus stacking Helicon Focus version 6.3.7 Pro;
RRID:SCR_014462).

For scanning electron microscopy (SEM), specimens
were air-dried for at least one week in a desiccator. The
samples were mounted with double-sided adhesive tape
onto stubs, sputter-coated with 19 nm pure gold (Au)
by using an Emitech K550X (Quorum Technologies
Ltd., West Sussex, UK) and investigated with a scan-
ning electron microscope of the type Zeiss EVO LS 10
(Carl Zeiss Microscopy GmbH, Jena, Germany) and the
software SmartSEM version V05.04.05.00 (Carl Zeiss
Microscopy GmbH, Jena, Germany).

After completion of the microscopical studies, the
remaining wasps were killed by freezing them at - 20°C.

Synchrotron X-ray phase-contrast microtomography
(SR-pCT)

Two metasomas of ethanol-fixed female V. canescens
were  dehydrated stepwise in  ethanol and
critical-point-dried by using a Polaron 3100 (Quorum
Technologies Ltd.,, West Sussex, UK) to minimize
shrinking artefacts by water loss during the tomog-
raphy procedure. The anterior ends of the metasomas
were glued onto the tips of plastic pins, so that the
ovipositor tip was oriented upright, and mounted
onto the goniometer head of the sample stage for
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tomography. Synchrotron X-ray phase-contrast micro-
tomography (SR-pCT) [73] was performed at the
beamline ID19 at the European Synchrotron Radiation
Facility (ESRF) (Grenoble, France) at 19 keV (wave-
length 8 - 10°'" m) and an effective detector pixel
size of 0.68 pm with a corresponding field of view of
1.43 - 1.43 mm; 6000 projections were recorded over
the 180 degree rotation. The detector-to-sample dis-
tance was 12 mm. As the structures of interest were
larger than the field of view, four separate image
stacks were acquired. Therefore, the sample was repo-
sitioned in between the imaging procedure, resulting
in a certain overlap of two consecutive images. The
3D voxel datasets were reconstructed from the 2D ra-
diographs by using the filtered back-projection algo-
rithm ([74, 75] developed for absorption contrast
tomography.

Registration and segmentation of SR-uCT images

To obtain a high-resolution 3D image of the ovipositor
and the inherent muscles, two consecutive images from
the stack were geometrically aligned in an iterative 3D
rigid registration procedure (Additional file 3). A
stepwise strategy was applied for the registration. The
two data sets were aligned according to the transla-
tion of the sample stage in between imaging. The im-
ages were then rigidly registered by using normalized
mutual information of the grey value images as a
similarity measure, with a line search algorithm for
the optimization approach. A hierarchical strategy was
applied to reduce the risk of finding local minima,
starting at a coarse resampling of the datasets and
proceeding to finer resolutions. Finally, an affine
transformation by using a Lanczos interpolation (cf.
[76]) was performed that interpolated both images
into the same coordinate system. As a result, all four
images were matched in a common coordinate sys-
tem. An edge-preserving smoothing filter was applied
for the segmentation of the individual structures. Seg-
mentation was based on local differences in densities,
as chitinous structures have higher densities than
muscles. Therefore, grey value images were binarized
by using a dual threshold approach that allowed the
extraction and separation of regions with different
densities.

Image processing and extraction of individual morphological
structures

The obtained two masks of muscles and denser struc-
tures were further processed to differentiate them
into their various morphological components. There-
fore, a semi-automatic extraction of biological struc-
tural features was applied by wusing geometric
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information. First, small islands were removed with
an opening filter and, subsequently, the connected
components were automatically labelled. Second, the
resulting chitinous structures were manually split at
the connection points between the female T9 and the
valvifers and at the olistheter mechanism of the tere-
bra, as these fine structures could not be segmented
automatically because of the limited resolution of the
images. For each muscle bundle, insertion regions
(apodemes) were identified on the cuticular elements
at both muscle ends, with the whole muscle between
the apodemes being determined in a semi-automated
interpolation process. This resulted in individual la-
bels for the six muscles involved in ovipositor actu-
ation mechanics. A Gaussian filter was applied for
smoothing the 3D masks of the individual chitinous
and muscular structures and 3D morphological volu-
metric models of the biological structures were
generated.

Image processing was performed by using the software
Amira version 6.0 (FEI, Hillsboro, OR, USA;
RRID:SCR_014305) and the custom MATLAB scripts
version R2016a (The MathWorks, Inc., Natick, MA,
USA; RRID:SCR_001622).

Muscle and leverage analyses

Muscle volume, mean length and mean cross section
area were determined from the 3D data sets. The ob-
tained muscle volume values potentially are lower
than in living animals due to shrinking artefacts. The
total muscle length and the major direction of the
muscle force was determined as the distance between
the centre points of the attachments of the muscles
and the direction of the line in between, respectively.
The exact locations of the muscles’ origins and inser-
tions were verified with light microscopy. The mean
cross section area (CSA) was determined as the
muscle volume / muscle length. However, the orien-
tation of the single muscle fibre might deviate from
the direction of the main muscle force (cf. [77]),
which potentially results in an underestimation of
the estimated CSA of an individual muscle and thus
its maximum muscle force but also an overesti-
mation of its maximum contraction distance. The
anatomical inlevers were measured from the 3D data
set and the joint angles were determined. The ana-
tomical lever was defined as the length of the line
between the joint axis and the point where the
muscle force is applied, i.e. the tendon attachment
point. The effective lever arm, which is pivotal for
the efficiency of the force transmission, is defined as
the perpendicular distance between the projection of
the line of action of the tendon attachment point
and the joint axis.
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Additional files

Additional file 1: Video sequence of female Venturia canescens probing
with their terebra in a mealy substrate and potential egg injection into a
host larvae (Ephestia kuehniella). (MP4 19585 kb)

Additional file 2: Animation of the rotating segmented 3D model of
the ovipositor of Venturia canescens. (MP4 12464 kb)

Additional file 3: Registered SR-uCT images of the section of the
metasoma of Venturia canescens that contains the musculoskeletal ovipositor
system and animation of the surface rendering of the aligned SR-uCT data.
(MP4 11892 kb)

Abbreviations

1vf: Tst valvifer; Tvv: 1st valvula; 2vf: 2nd valvifer; 2vv: 2nd valvula; 3vv: 3rd
valvula; af9: Anterior flange of T9; asdf: Anterior section of the dorsal flange
of the 2nd valvifer; au: Aulax; ba: Basal articulation; bl: Basal line; blb: Bulb;
ca: Cordate apodeme; cs: Campaniform sensilla; ct: Ctenidium; dp2: Dorsal
projection of the 2nd valvifer; dri1: Dorsal ramus of the 1st valvula; ec: Egg
canal; F: Force; F,: Horizontal vector components of a force; hsl: Hook-shaped
lobe of the 2nd valvifer; iar: Interarticular ridge of the 1st valvifer; iva: Intervalvifer
articulation; If1: Longitudinal flap of the 1st valvula; M: Torque; m1: Tst valvifer-
genital membrane muscle; m2: Anterior 2nd valvifer-2nd valvula muscle;

m3: Posterior 2nd valvifer-2nd valvula muscle; m4a: Dorsal T9-2nd valvifer muscle
part a; m4b: Dorsal T9-2nd valvifer muscle part b; m5: Ventral T9-2nd valvifer
muscle; mé: Posterior T9-2nd valvifer muscle; mb2: Median bridge of the 2nd
valvifers; nm: Notal membrane; no: Notch; oth: Olistheter; pra: Processus articularis;
prm: Processus musculares; psdf: Posterior section of the dorsal flange of the 2nd
valvifer; rh: Rhachis; sc: Scales; scts: Subscenidial seta; SEM: Scanning electron
microscopy; sp: Sensillar patch of the 2nd valvifer; SR-uCT: Synchrotron X-ray
phase-contrast microtomography; ssc: Spindle-shaped cavity in the distal part of
the terebra; st: Sawtooth; T6: 6th abdominal tergum; T7: 7th abdominal tergum;
T8: 8th abdominal tergum; T9: Female T9 (9th abdominal tergum); T10: 10th
abdominal tergum; tm4b: Tendon of the dorsal T9-2nd valvifer muscle part b;
trb: Terebra; tva: Tergo-valvifer articulation; vd: Duct of the venom gland reservoir
of the 2nd valvifer; viv: Valvillus
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