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Abstract

Background: Hibernation allows animals to survive periods of resource scarcity by reducing their energy
expenditure through decreased metabolism. However, hibernators become susceptible to psychrophilic pathogens
if they cannot mount an efficient immune response to infection. While Nearctic bats infected with white-nose
syndrome (WNS) suffer high mortality, related Palearctic taxa are better able to survive the disease than their
Nearctic counterparts. We hypothesised that WNS exerted historical selective pressure in Palearctic bats, resulting in
genomic changes that promote infection tolerance.

Results: We investigated partial sequences of 23 genes related to water metabolism and skin structure function in
nine Palearctic and Nearctic hibernating bat species and one non-hibernating species for phylogenetic signals of
natural selection. Using maximum likelihood analysis, we found that eight genes were under positive selection and
we successfully identified amino acid sites under selection in five encoded proteins. Branch site models revealed
positive selection in three genes. Hibernating bats exhibit signals for positive selection in genes ensuring tissue
regeneration, wound healing and modulation of the immune response.

Conclusion: Our results highlight the importance of skin barrier integrity and healing capacity in hibernating bats.
The protective role of skin integrity against both pathophysiology and WNS progression, in synergy with down-
regulation of the immune reaction in response to the Pseudogymnoascus destructans infection, improves host
survival. Our data also suggest that hibernating bat species have evolved into tolerant hosts by reducing the
negative impact of skin infection through a set of adaptations, including those at the genomic level.
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Background
Emergence of a novel infectious disease or pathogen
transmission to a naïve population leads to allele fre-
quency changes in populations experiencing disease out-
breaks with high mortality [1, 2]. Carriers of alleles that
facilitate less serious disease manifestation have a higher
chance of survival, while gene variants causing increased
susceptibility to the infection or more severe diseases
are more likely to vanish from the population gene pool.
Pathogens serve as a selective force in susceptible hosts,
directing changes in host population genetic diversity.

Alterations in host genetic structure driven by pathogens
are detectable in coding DNA sequences as signals for
natural selection. While equal rates of both substitution
types occur during neutral evolution, a higher rate of
non-synonymous substitutions (dN) than synonymous
substitutions (dS) is a sign of predominant positive se-
lective pressure (dN/dS > 1) and, conversely, higher rates
of synonymous substitutions are a sign of predominant
negative selective pressure (dN/dS < 1) [3, 4].
White-nose syndrome (WNS), a fungal infection of hi-

bernating bats, potentially applies strong selection pressure
on bat populations in the Nearctic. Since its emergence in
2006, WNS has caused the death of millions of bats across
the eastern part of North America [5]. Indeed, WNS has
led to the near extirpation of some of the most common
hibernating Myotis species due to local declines exceeding
90% per year [6, 7]. In comparison, Palearctic bat species
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suffering from WNS show greater survival, with no reports
of population declines attributable to WNS [8, 9] despite
sporadic mortality [10, 11].
The difference in survival rate of infected Nearctic and

Palearctic bats is most likely connected to species-specific
pathophysiologic impacts during host-pathogen interaction.
The infective agent of the disease, the psychrophilic fungus
Pseudogymnoascus destructans, invades deep into living
skin layers on the hibernating bat’s nose, ears, limbs and
membranes [10–14]. The disease may subsequently have a
negative effect on ion and blood gas balance [15, 16], evap-
orative loss of water [17] and overall hibernation behaviour
[18]. Frequent arousals from hibernation in infected, mori-
bund bats [19] may also contribute to loss of energy re-
serves essential for survival. Following arousal from torpor,
the host’s infection response will exacerbate tissue damage
by immunopathology [20] and reaction to fungal metabolite
accumulation. In particular, riboflavin produced by P.
destructans, which hyperaccumulates in skin lesions during
hibernation, causes oxidative tissue damage [14] and trig-
gers a cytotoxic immune response when presented to the
innate immune system [21].
The recent emergence of WNS in the Nearctic resulting

in high mortality rates, and later recognition of the patho-
gen in the Palearctic with differing disease manifestation,
suggests spatio-temporal variation in host-pathogen coevo-
lution [22]. Recent evidence demonstrates that P. destruc-
tans infection occurred in Palearctic bats prior to its
emergence in the Nearctic [23, 24]. Coupled with current
disease tolerance in the Palearctic, historical exposure to the
pathogen has given rise to the hypothesis that WNS may
have caused mass mortality events in the Palearctic in the
past. Martínková et al. [8] speculated that the large fossil de-
posits of bat species now rare in underground hibernacula
may have accumulated due to a WNS epidemic in the Pleis-
tocene. Based on the assumption that Palearctic bats were
exposed to the lethal skin infection prior to the Holocene,
we hypothesised that Palearctic bat species may have
evolved inheritable mechanisms leading to tolerance toward
the disease. If so, any alteration in genetic information
should be detectable in genes encoding proteins interacting
with the pathogen in a manner dependent on infection
pathophysiology. Identification of those genes targeted by
positive selection should enhance our understanding of dis-
ease pathogenesis. Considering the disease’s etiology and
close functional connection to acid-base and electrolyte
homeostasis and skin layer damage during disease progres-
sion, we hypothesise that genes involved in water metabol-
ism and skin function in hibernating bat species are most
likely to display signatures of positive selection.

Results
Annotated sequences of 23 genes were retrieved from the
NCBI database for species in the Vespertilionidae and

Miniopteridae families, namely acad10, acp5, anxa1, aqp3,
aqp4, aqp7, aqp9, bcam, ctnnb1, fads1, fgf10, guca2b, has2,
hyal2, hyal3, krt8, lrp4, psen2, ptch2, pxn, sncg, tgm1, and
tnfsf13 (Additional file 1). We sequenced five genes in
seven bat species using PacBio SMRT technology
(GenBank Accession Numbers: MH178037-MH178081)
and supplemented the datasets from the public database
with 71 phased partial coding sequences. In other species
(Additional file 2), PacBio sequences were not of sufficient
quality to provide at least 10× coverage. In total, we ana-
lysed 11 bat species with 1–23 genes available per species,
and partial coding sequences of 23 genes available in 3–9
species (Additional file 1).
Using a maximum likelihood framework [25], we esti-

mated the rate ratio of non-synonymous to synonymous
substitutions ω = dN/dS for the available coding sequences.
We used the likelihood ratio test (LRT) to differentiate be-
tween nested models of DNA sequence evolution, where
twice the difference in model log-likelihoods (2ΔlnL) ap-
proximately follows a χ2 distribution with degrees of free-
dom equal to the difference in the number of model
parameters. Comparison of M0 and M3 nested models of
DNA sequence evolution (testing for variability of ω be-
tween sites) revealed 13 of the 23 genes to be significant
after correction for multiple testing with false discovery
rate (FDR) (Table 1). Comparison of M1 to M2 and M7 to
M8 model pairs (differentiating between neutral and posi-
tive selection) revealed significance in seven genes. Statis-
tically significant support for positive selection (FDR
adjusted p < 0.05) was detected in genes encoding annexin
A1 (anxa1), tartrate resistant acid phosphatase 5 (acp5),
aquaporin 3 (aqp3), the basal cell adhesion molecule
(bcam), LDL receptor related protein 4 (lrp4), patched 2
(ptch2) and synuclein gamma (sncg) (Table 1).
In those genes showing positive selection, we used Bayes

empirical Bayes (BEB) to identify specific amino acids en-
coding sites under significant positive selection (Fig. 1).
We identified four sites under positive selection in acp5,
seven sites in anxa1 (with one additional site identified
from a comparison of the M7 and M8 models), one site in
aqp3, one site recognised from both model comparisons
and one additional site identified by comparing M7 to M8
in ptch2. All six sites identified in bcam were supported
by the M7 to M8 comparison (Table 2, Fig. 1).
Amino acid sites under positive selection were mapped

onto predicted 3D protein structure models of four genes
(Fig. 2). In tartrate resistant acid phosphatase (TRAP;
encoded within the acp5 gene), the selected sites were
spread along the protein sequence, while in ANXA1, the
selected sites were accumulated in the N-terminal region
of the protein (six out of eight sites detected occurred
within the range 17–27; Fig. 1). The sole AQP3 site under
selection was located within a transmembrane helix, and
four out of six sites identified under positive selection in
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Table 1 Maximum likelihood analysis of positive selection in DNA-encoding proteins linked to water metabolism and skin structure

Gene Protein n n M0-M3 M1-M2 M7-M8

sp. ind. LRT p ω (prop.) LRT p ω (prop.) LRT p

acad10 ACAD10 4 4 19.6 0..495 1.01 (0%) 0.0 1.000 1.36 (13.3%) 1.4 0.877

acp5 TRAP 9 26 191.5 0.001 6.16 (2.0%) 34.4 0.001 6.05 (2.0%) 38.1 0.001

anxa1 ANXA1 9 16 157.4 0.001 8.57 (15.3%) 57.2 0.001 8.03 (15.5%) 59.1 0.001

aqp3 AQP3 8 28 69.7 0.001 9.22 (1.1%) 14.8 0.004 9.19 (1.1%) 17.1 0.001

aqp4 AQP4 3 3 1.3 1.000 1.00 (3.0%) 0.0 1.000 14.87 (2.5%) 0.6 1.000

aqp7 AQP7 3 3 0.1 1.000 1.00 (5.1%) 0.0 1.000 1.00 (0%) 0.0 1.000

aqp9 AQP9 4 4 12.2 0.028 3.19 (15.5%) 4.3 0.292 3.19 (15.5%) 4.6 0.226

bcam BCAM/Lu 6 8 73.5 0.004 5.81 (5.2%) 10.5 0.025 5.32 (5.8%) 11.1 0.018

ctnnb1 CTNNB1 4 4 0.0 1.000 1.00 (0%) 0.0 1.000 1.00 (0%) 0.0 1.000

fads1 FADS1 3 3 18.0 0.03 13.40 (1.5%) 7.0 0.085 13.46 (1.6%) 7.2 0.081

fgf10 FGF10 5 5 7.7 0.155 1.00 (1.7%) 0.0 1.000 1.00 (1.8%) 0.1 1.000

guca2b GUCA2B 7 12 29.1 0.001 3.53 (5.1%) 3.6 0.345 3.23 (6.3%) 5.4 0.172

has2 HAS2 4 4 0.0 1.000 1.00 (0%) 0.0 1.000 1.01 (0%) 0.0 1.000

hyal2 HYAL2 5 5 17.8 0.003 1.00 (2.9%) 0.0 1.000 1.00 (2.9%) 0.0 1.000

hyal3 HYAL3 4 4 0.4 1.000 1.00 (8.2%) 0.0 1.000 1.01 (0%) 0.0 1.000

krt8 KRT8 4 4 0.0 1.000 1.00 (0%) 0.0 1.000 1.00 (0%) 0.0 1.000

lrp4 LRP4 4 4 14.1 0.015 52.96 (1.11%) 9.3 0.035 52.95 (1.11%) 10.1 0.021

psen2 PSEN2 3 3 12.98 0.001 11.39 (1.1%) 4.1 0.351 10.95 (1.2%) 3.9 0.226

ptch2 PTCH2 4 4 67.2 0.001 10.75 (0.4%) 9.110 0.035 10.45 (1.2%) 10.7 0.018

pxn PXN 4 4 6.6 0.225 1.00 (0%) 0.000 1.000 1.00 (0%) 0.0 1.000

sncg SNCG 3 3 13.2 0.020 84.38 (1.1%) 11.506 0.018 85.32 (1.1%) 11.8 0.016

tgm1 TGM1 5 5 6.7 0.620 1.00 (4.8%) 0.000 1.000 1.00 (0%) 0.0 1.000

tnfsf13 TNFSF13/APRIL 4 4 12.1 0.028 14.26 (0.6%) 3.286 0.370 8.6 (1.1%) 3.1 0.404

The table shows ω values indicating the ratio of non-synonymous to synonymous substitution rates. n = sample size; sp. - species; ind. - individuals; LRT likelihood
ratio test statistic, given as Δ2lnL in the nested models compared (M0-M3, M1-M2 and M7-M8); prop. - proportion of sites with ω > 1; and p-values (adjusted for
multiple testing with FDR; significant at α = 0.05) for the corresponding tests. Tests indicating signals of natural selection are in bold

Fig. 1 Amino acid sites under positive selection in bats. Sites under selection in partial coding sequences of the genes acp5, anxa1, aqp3, bcam
and ptch2 were identified phylogenetically for 1–11 individuals of each species using a maximum likelihood framework. The pie charts displayed
show the relative frequency of amino acids in each sample. Numbers above the alignment positions refer to the amino acid’s position in the
reference (see Table 2). The phylogenetic tree depicts relationships pruned from a previously published multilocus phylogeny [70]. P = bat species
distributed in the Palearctic, N = Nearctic, A = Afrotropical
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BCAM lay in the 2nd Ig-like C2 type domain (Fig. 2). It
was not possible to model the structure of PTCH2, the
fifth protein with sites under positive selection. We as-
sume that the two sites under positive selection were both
located in the intracellular partition of the protein.
The branch site test of positive selection compared the

two nested models identifying the branch under positive
selection (A1 and A). A significant difference between the
models indicated positive selection in Eptesicus fuscus
(p = 0.001) and E. nilssonii (p = 0.001) in acp5 (Table 3).
We then tested for positive selection on species in a

Palearctic monophyletic clade that included Myotis davi-
dii, Myotis emarginatus and Myotis myotis. Three genes
under selection were available for the clade (Fig. 1,
Additional file 1). Clade model C vs. M2a_rel revealed
positive selection in acp5 for the species (p = 0.005), but
no significant evidence of selection in anxa1 and aqp3
(p > 0.05).

Discussion
Hibernation is a strategy used by temperate-zone bats to in-
crease survival rate under conditions of constrained energy
reserves [26, 27]. Exposure of hibernating individuals to

additional stressors, such as pathogen pressure, could result
in health-related costs decreasing their ability to overwinter.
Mounting an immune response at times of low activity, low
body temperature and reduced possibility of regulation and
energy uptake is a risky defence mechanism against poten-
tial microbial threats as it may contribute to mortality
through depletion of fat reserves [19, 28] or overwhelming
inflammation [20]. Frequency changes in functionally im-
portant single nucleotide polymorphisms in histocompati-
bility antigens, cytokines and toll-like receptors have been
recorded in Myotis lucifugus populations that survived the
initial P. destructans epidemic front associated with popula-
tion decline [2]. Considering the risks associated with im-
mune response investment in hibernators, tolerance of the
pathogen at a molecular level is likely to be the best pos-
sible approach to infection in hibernation.
WNS pathophysiology is directly connected to the

bat’s hibernation ability. Assuming that a) Palearctic bats
have been historically exposed to P. destructans [23, 24],
b) Nearctic bats represent naïve animals with no histor-
ical influence of infection, and c) Afrotropic bats remain
healthy as they live in an environment too warm for
pathogen growth [29], it should be possible to detect

Table 2 Bat amino acid sites under selection

M1-M2 M7-M8

Gene pos aa p mean SE pos aa p mean SE

acp5 98 S/A 0.003 6.542 1.424 98 S/A 0.0001 7.299 1.384

XP_006104612.1 125 G/R/K 0.0001 6.559 1.394 125 G/R/K 0.0001 7.304 1.372

145 R/Q 0.0001 6.557 1.396 145 R/Q 0.0001 7.304 1.373

223 Q/R 0.017 6.454 1.554 223 Q/R 0.006 7.261 1.461

anxa1 17 E/Q 0.024 8.227 1.718 17 E/Q 0.002 7.841 1.296

XP_014396764.1 20 E/K 0.009 7.792 1.410

22 T/M/V/I 0.0001 8.420 1.297 22 T/M 0.0001 7.857 1.255

23 K/N 0.0001 8.420 1.299 23 K/N 0.0001 7.857 1.255

25 I/V 0.020 8.261 1.653 25 I/V 0.002 7.842 1.318

27 G/A/T 0.0001 8.420 1.297 27 G/A/T 0.0001 7.857 1.255

34 P/S 0.002 8.403 1.345 34 P/S 0.0001 7.856 1.259

55 I/V 0.012 8.325 1.526 55 I/V 0.002 7.846 1.285

aqp3
XP_006758647.1

128 L/W 0.001 8.693 1.604 128 L/W 0.0001 8.027 1.895

bcam 365 N/D 0.038 6.850 1.934

XP_015416692.1 407 V/I 0.012 7.019 1.678

431 S/V/P 0.008 7.046 1.628

434 I/L 0.013 7.013 1.690

440 F/H 0.035 6.866 1.902

523 S/P 0.009 7.040 1.641

ptch2 3 R/G/H 0.028 2.806 1.006

XP_014319265.1 1155 T/S/A 0.046 4.57 1.778 1155 T/S/A 2.842 0.963

Amino acid sites under positive selection were analysed using Bayes empirical Bayes. Position (pos) refers to the position of an amino acid (aa) mapped against
the reference sequence stated in the table. The calculation is based on both M1-M2 and M7-M8 comparisons and shows the M1–M2 comparison as more strict
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selective changes in the bat genome testifying to the
consequences to infection-related mortality, this serving
as a selective pressure favouring beneficial mutations
over the ancestral genetic sequence.
Infection by P. destructans is dependent on low tempera-

tures as the fungus is unable to grow at temperatures greater
than 20 °C [29]. At environmental temperatures prevalent in
hibernacula, the fungus invades the host’s skin from the epi-
dermis to the deeper skin layers [20, 30, 31]. An ability to
protect the skin from lesions and functional disruption is
critical to the bat’s survival, and even more so as regards the
skin forming the wing (considered the bat’s largest organ).
Of the genes signalling positive selection, many are involved
in maintaining skin homeostasis and promoting wound
healing (Table 1, Fig. 3). While proving a direct causal link
between selection on particular genes (Table 1) and histor-
ical P. destructans exposure is impossible without experi-
mental manipulation, the molecular function of genes under
selection may be interpreted in relation to a skin infection.

Sites under positive selection in the Patched 2 protein
(PTCH2) were located in the protein intracellular partition
(Fig. 1). PTCH2 is functionally similar to its homologue,
PTCH1, both of which serve as receptors in the Sonic
hedgehog pathway, crucial in embryonic development and
adult tissue homeostasis [32, 33]. While PTCH2 appears to
be redundant in embryonic development, it preserves a
crucial role as regards the adult epidermis [34, 35], though
the molecular mechanism remains unclear. Synuclein
gamma protein (SNCG) is expressed in stratum granulo-
sum, both in embryonic development and in adults, where
it functions as a keratin network modulator in the epider-
mis [36]. The basal cell adhesion molecule (BCAM/Lu), a
membrane-bound molecule expressed by keratinocytes in
inflammatory states [37], may contribute to anti-infection
reactions in the bat’s skin. The accumulation of sites under
positive selection in the 2nd Ig-like C2 type domain in
BCAM (Fig. 2) may indicate the importance of this domain
as regards molecular functioning in skin pathology, though

Fig. 2 Positively selected sites in bat protein structure. Sites in TRAP, ANXA1, AQP3 and BCAM highlighted in red are under positive selection
(estimated by Bayes empirical Bayes) while yellow sites represent iron binding (TRAP) and calcium binding (ANXA1) sites (UniPROT P29288 and
P07150, respectively). The models were created by Phyre2 structure prediction software [76], using a reference bat species protein sequence
(XP_006104612.1, XP_014396764.1, XP_006758647.1, XP_015416692.1). The PTCH2 model is not included as we were unable to predict a reliable
model without a high proportion of ab-initio modelled sites
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the molecular mechanism for BCAM activity remains
unclear.
LDL receptor protein 4 (LRP4) belongs to a family of

LDL receptor proteins that, in dimeric form (LRP5/
LRP6), serve as activating receptors for the Wnt/β-ca-
tenin pathway. Apart from its role in embryogenesis, this
pathway is reactivated in adults and mediates tissue re-
generation following injury [38], its role lying in negative
regulation against activation of the Wnt/β-catenin path-
way [39, 40]. While LRP4 shares the general structural
motifs of the family, it lacks some binding motifs. LRP4
mutations severely alter pathway signalling. Bats with
skin disruptions are most likely affected by changes in
LRP4 structure and its subsequent effect on the Wnt/
β-catenin pathway during wound healing.
Aquaporin 3 (AQP3) is expressed in keratinocytes [41]

and epidermal tissues and is involved in the regulation of
water and glycerol content in skin [41], thereby influen-
cing wound healing. By regulating water flow, AQP3 facili-
tates epidermal cell migration and proliferation [42].
AQP3 has been shown to have a role in the healing of cu-
taneous burn wounds [43], which are similar to the skin
disruption caused by riboflavin accumulation, tissue ne-
crosis and subsequent oxidative stress contributing to
WNS pathology [14]. The site under selection in AQP3
possibly affects the shape (and thus function) of the porin
through its position in the transmembrane helix (Fig. 2).
Skin barrier integrity is an important factor in WNS

pathology and survival (Fig. 3). Diseased and moribund
bats with WNS skin lesions arouse from hibernation
more frequently than healthy animals [19, 28]. During
arousal, body temperature rises and is followed by a not-
able increase in activity and metabolism, following which
the immune system mounts a response to the chronic
infection. This reaction is often uncontrolled, causing

Table 3 Branch site tests for proteins undergoing positive selection

Gene/Foreground branch n foreground ind. 2ΔlnL p

acp5

Eptesicus fuscus 1 73 0.001

Eptesicus nilssonii 1 27.5 0.001

Myotis davidii 1 0.7 1.000

Myotis myotis 5 0.7 1.000

Myotis brandtii 1 0.0 1.000

Barbastella barbastellus 4 0.0 1.000

Myotis emarginatus 8 0.0 1.000

Myotis lucifugus 5 −0.7 1.000

anxa1

Myotis davidii 1 8.1 0.153

Myotis emarginatus 4 8.1 0.153

Myotis brandtii 1 3.1 1.000

Eptesicus fuscus 1 3.1 1.000

Neoromicia nana 1 1.9 1.000

Eptesicus nilssonii 2 0.0 1.000

Myotis lucifugus 1 0.0 1.000

Myotis myotis 4 0.0 1.000

Pipistrellus pipistrellus 1 −1.8 1.000

aqp3

Eptesicus fuscus 1 0.9 1.000

Myotis myotis 4 0.8 1.000

Eptesicus nilssoni 2 0.0 1.000

Myotis brandtii 1 0.0 1.000

Myotis davidii 1 0.0 1.000

Myotis emarginatus 11 0.0 1.000

Myotis lucifugus 1 0.0 1.000

Neoromicia nana 4 0.0 1.000

Pipistrellus pipistrellus 3 0.0 1.000

bcam

Eptesicus fuscus 1 0.1 1.000

Myotis brandtii 1 0.0 1.000

Myotis davidii 1 0.0 1.000

Myotis emarginatus 1 0.0 1.000

Myotis lucifugus 2 0.0 1.000

Pipistellus pipistrellus 2 0.0 1.000

lrp4

Eptesicus fuscus 1 0.7 1.000

Myotis lucifugus 1 0.2 1.000

Myotis brandtii 1 0.0 1.000

Myotis davidii 1 0.0 1.000

Table 3 Branch site tests for proteins undergoing positive selection
(Continued)

Gene/Foreground branch n foreground ind. 2ΔlnL p

ptch2

Eptesicus fuscus 1 0.7 1.000

Myotis lucifugus 1 0.2 1.000

Myotis brandtii 1 0.0 1.000

Myotis davidii 1 0.0 1.000

sncg

Myotis davidii 1 0.8 1.000

Eptesicus fuscus 1 0.0 1.000

Myotis brandtii 1 0.0 1.000

Proteins were tested for positive selection using the likelihood ratio test (A-
model as alternative hypothesis and A1-model with ω = 1 as null hypothesis).
p-values (FDR corrected; significant at α = 0.05) indicating signals of natural
selection are marked in bold
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tissue damage [20]. Annexin A1 (ANXA1), which is
positively selected for in bats, acts as a mediator of
glucocorticoid anti-inflammatory activity [44], and hence
may be able to down-regulate such an immune response.
ANXA1, which is produced by innate immunity cells
such as neutrophils, has an autocrine and paracrine ef-
fect on the innate immunity cells through inhibition of
vascular attachment and extravasation [45]. ANXA1 also
plays an important role in adaptive immunity against
chronic infectious disease [46], modulating T-cell adaptive
response and directing the immune response towards the
Th1/Th17 response [47, 48]. Increased expression of il-17
and il-6 [49] directs proliferation of Th17 and Th1/Th17
cells, the latter T-cells also being affected by ifnγ, which is
highly variable in post-WNS populations [2]. The ob-
served decrease in neutrophil adhesion and inefficient
antibody-mediated immune response [50] may be an ef-
fect of a predominating protective Th1/Th17 response to
the pathogen in later stages of the infection. The overall
character of the immune reaction supports our proposal

for an important role of ANXA1 in infection pathology
and regulation of the immune response. As a regulator of
inflammation, ANXA1 also plays a role in the outcome of
inflammatory processes, wound repair and epithelial re-
covery [51]. The selected sites in ANXA1 are accumulated
in the N-terminal region of the protein (Figs. 1 and 2)
and, while they do not overlay the binding sites, they point
to the importance of the area.
Similarly, TRAP also serves as an innate immune regu-

lator, participating in the macrophage immune response
and impacting on pathogen clearance from the host,
most likely by affecting innate immune cell activity at
the site of infection [52] by catalysing production of re-
active oxygen species [53]. It also participates in
down-regulation of the immune system and modulation
of the Th1 response [54], which may contribute to Th1/
Th17 modulation of the immune response by ANXA1.
Metal binding sites in TRAP are spread along the pro-
tein sequence and do not directly coincide with the se-
lected sites; hence, the effect of selected sites on binding

Fig. 3 Molecular mechanistic model of white-nose syndrome (WNS) tolerance in bats. During hibernation, a bat’s body temperature, metabolic
rate and immune system are lowered for up to six months, only increasing for periods lasting up to several hours during periodic arousal from
torpor. Bat hibernation provides suitable conditions for Pseudogymnoascus destructans infection and development of the fungal disease WNS. The
fungus initially grows on the skin’s surface and progresses toward invasive infection, whereupon it deposits large amounts of vitamin B2 into skin
lesions, leading to skin necrosis. In the most severe cases, either large areas of skin become necrotic or the immune system’s response to massive
infection overwhelms the animal upon arousal. Molecular mechanisms supporting WNS tolerance are likely to include strengthening of skin
integrity maintenance and enhancement of wound healing. Surprisingly, there may also be negative modulation of the immune response, which
could otherwise deplete the bat’s energy reserves or cause death through immune reconstitution inflammatory syndrome [20]
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capacity cannot be evaluated from a simple sequence
comparison and would require further study.
The amino acid sites under positive selection do not ne-

cessarily reflect the active or binding sites of proteins. In
fact, it is more probable that protein function is maintained
through purifying selection (ω < 1), with a higher propor-
tion of synonymously mutated sites conserving the active
amino acid site. While a positively selected active site is un-
likely, it is possible, most notably in cases of protein
co-evolution with a ligand. Variable regions in the sequence
are located on the protein’s surface and influence structural
folding. Protein structure influences affinity and interaction
to partners, which is probably the case as regards the sites
detected in this study. Just as with the shape of a folded
protein, protein interaction barriers may affect their bio-
logical function; hence, an absence of mechanical barriers
in the area surrounding the active site is essential for phys-
ical interaction of the proteins, and positive selection in
these regions may facilitate inter-protein contact.
The signal for positive selection in a protein can be allo-

cated to specific branches on a phylogeny and can be iden-
tified at sites in the DNA sequence. Nested branch-site
models require differences in the natural selection signal at
an a priori defined branch, compared with the remaining
diversity, which is presumed to be under purifying selec-
tion in the model. We detected positive selection in the
acp5 gene in both Nearctic and Palearctic Eptesicus and in
a clade of Palearctic Myotis. The Nearctic bat species Epte-
sicus fuscus shows limited levels of resistance to WNS in-
fection [55], while the Palearctic species Eptesicus nilssonii
rarely develops severe WNS pathology [10]. Palearctic M.
myotis and M. emarginatus are representative of those
species displaying a high fungal load and severe WNS
pathology [10, 22], though they are able to tolerate the in-
fection [22]; information on infection status of the third
species in the Palearctic clade, M. davidii, is presently un-
available. While the mechanisms exerting selective pres-
sure on acp5 may differ from P. destructans infection, it
may now provide protection against WNS progression.
We were unable to locate branches of positive selec-

tion in some genes, most likely due to a lack of available
sequences (nlrp4 = 4, nptch2 = 4, nsncg = 3) and, therefore,
low sequence variability in the data set. It has also been
shown that, with an increased proportion of synonym-
ous mutations (dS), the branch site test for positive se-
lection is more prone to false negative results [56]. Lack
of selection signal heterogeneity in branches could also be
assigned to host-unspecific characteristics of the pathogen,
where the selective pressure would affect all species in the
analysis. However, as the number of sequences in the ana-
lysis increases with additional sequencing effort (e.g. [57]),
so the chances of detecting significant signs of positive se-
lection in at least some branches increases, thus detection
of a lack of positive selection in the analysis is more likely.

Inability to detect a specific branch under selection may
also be affected by the use of two different haplotypes
from each individual during sequence analysis, while the
relationship between the two haplotypes remains unevalu-
ated. In cases where one haplotype dominates, presence of
the second haplotype in the sequence analysis may mask
the signal of a positively selected haplotype in the species.
Since the protein products of genes for which positive

selection has been detected are relevant to the pathology
and pathophysiology of WNS, we expect them to play a
role in skin integrity, wound healing and immune sup-
pression. Hence, we can hypothesise that the selected
genes contribute to the mechanism of infection tolerance
in Palearctic bat species infected with WNS (Fig. 3).
Extrapolating from the devastating effects on Nearctic

bat populations not previously exposed to skin injuries
caused by P. destructans [6], WNS has to be the historical
factor exerting enormous selection pressure on Palearctic
bats. Not only could WNS have influenced genetic changes
in skin integrity it has probably also influenced other rear-
rangements capable of preventing the devastating effects of
the disease. Clear differences between Nearctic and
Palearctic bats indicate at least two such rearrangements.
The first is a much higher tolerance to mite and insect ec-
toparasites in Palearctic bats (typically 100% prevalence in
breeding colonies) [58–60]. This results in habituation to
the stress of skin injuries, which may also act as a feedback
factor reducing neural sensitivity to such stimuli and their
effect upon arousal from torpidity. The second difference
between Palearctic and Nearctic bats relates to hibernation
tactics. Most hibernating Palearctic bats disperse into a
large number of less populated hibernacula rather than
forming giant clusters in a single mass hibernaculum, char-
acteristic for multiple Nearctic species [61, 62]. While this
behavioural pattern appears to have declined after the
WNS invasion front [63], repeated arousal caused by the
grooming of infected individuals could still lead to an unin-
tentional domino effect of multiple arousals [64]. This re-
sults in the breakdown of the core advantage of such
hibernation tactics, i.e. socially controlled thermal homeo-
stasis reducing demands on fat reserves and the need of in-
dividual behavioural skills for hibernation performance.
The above factors, suggested by the differences be-

tween Nearctic and Palearctic bats, illustrate the com-
plex nature of skin infection and the intricacies involved
in an adaptive response to an infectious agent. We show
that positive selection at the genetic level is combined
with the effects of increased tolerance to a parasite load
and behavioural rearrangements, reducing the bat’s cap-
acity to perform advanced hibernation tactics.

Conclusions
During hibernation, bats conserve energy by maintaining
a low body temperature and minimising metabolism.
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While this strategy enables them to survive periods of
resource scarcity, they become vulnerable to infection as
their immune system fails to actively battle against infec-
tion while in torpor. Once it had invaded living tissue,
the pathogen causes major damage, forming lesions and
depositing metabolites that lead to necrosis. The accu-
mulation of physiological consequences starts a cascade
of adverse effects that culminates in the death of the dis-
eased animal. We found that genes involved in the de-
velopment, structure and maintenance of skin show
signs of positive selection. With respect to lethal dermal
infection, the epidermis likely protects heterotherms by
acting as a passive barrier against infection during hiber-
nation, a time when the animal cannot invest energy
into immune reactions. The genes identified in this
study may provide inspiration in designing targeted
treatments for skin infections and for elucidating mecha-
nisms involved in disease tolerance and resistance to
other fungal infections, such as snake fungal disease or
amphibian chytridiomycosis.

Methods
Identification of putative genes
We first selected genes with water metabolism and skin
functions in the Gene Ontology database [65], then used
the keywords ‘water’ and ‘epidermis’ to find genes with
functions related to these keywords in Rattus norvegicus
(223 genes found). We then searched UniProtKB for
orthologous proteins in the Vespertilionidae and Mini-
opteridae families (50 genes found).
To identify genes expressed in Vespertilionidae during

natural P. destructans infection, we analysed Illumina
reads of M. myotis transcriptome (Accession numbers:
SRX2270325, SRX2266671) by mapping them in Geneious
mapper onto the reference nucleotide sequences of the se-
lected genes with high sensitivity. We mapped the reads
to the reference sequences using Geneious software ver-
sion 6.1.6 (Biomatters Ltd., Auckland, New Zealand).
From the set of 50 protein orthologs in Vespertilioni-

dae, we identified a subset of mRNA sequences for 30
selected genes expressed in M. myotis. Sequences of 23
of the 30 genes identified were found in more than two
species of Palearctic and Nearctic bats infected by P.
destructans by name and taxa search in the NCBI Nu-
cleotide database, and these were used for further ana-
lysis. We avoided searching for orthologs with BLAST
due to the non-negligible possibility of gene tree to species
tree discordance between paralogs and orthologs in closely
related species caused by incomplete lineage sorting [66].
Assembled coding DNA sequences expressed in M. my-

otis were then aligned with the reference to identify con-
served regions flanking a variable region in order to design
primers within an exon. Primers for amplification of the se-
lected coding regions were designed in Primer3web 4.0.0

[67, 68]. Forward and reverse gene primers were supple-
mented with an M13 oligonucleotide tail at the 5′ end to
facilitate barcoding, forming Primer set 1. Primer set 2 con-
tained paired barcodes and a complementary sequence to
the flanking M13 tails of Primer set 1 at the 3′ end. The
paired barcode sequences conformed to the barcoding
protocol in SMRT Analysis 1.4 (Pacific Biosciences, Menlo
Park, CA, USA).

Sample collection and DNA processing
Samples were obtained from ethanol-stored tissue col-
lections at the Institute of Vertebrate Biology of the
Czech Academy of Sciences, National Animal Genetic
Bank, Studenec, Czech Republic. DNA was extracted
using the DNeasy® Blood & Tissue Kit (Qiagen, Halden,
Germany) according to the manufacturer’s protocol,
additional DNA samples being obtained from the Griffin
Rabies Laboratory at the State of New York Department
of Health, Wadsworth, NY, USA. In total, 240 samples
representing 32 species from Europe, North America and
Africa were amplified with nested PCR (Additional file 2).
In the first PCR, coding regions of the selected genes were
amplified with the gene-specific primers, forming PCR set
1. The master mix for each gene contained 1× buffer,
0.2 mM dNTP, 0.2 μM of forward and reverse primers,
0.05 U Platinum Taq DNA polymerase (Invitrogen, Carls-
bad, CA, USA) and 1 μl of DNA. Each reaction was supple-
mented with MgCl2 at final concentrations given in
Additional file 3. The PCR was initialised with a hot-start at
95 °C for 3 min, followed by 35 cycles at annealing temper-
atures and annealing and extension (72 °C) times specified
in Additional file 3, after which the reaction was finalised at
72 °C for 3 min. The PCR product was diluted 33× and
used as a template for the second PCR. In the second PCR,
Primer set 2 was used for all genes, taking care that individ-
ual samples were amplified with a unique barcode combin-
ation. The PCR reaction was identical to the first PCR, with
1.5 mM of MgCl2 and the 35 cycles using the 95–53-72 °C
temperature profile for 40–40-ext seconds, where ext repre-
sents extension times per gene (Additional file 3). The PCR
product concentration was estimated from 2% agarose gels
stained with GoldView relative to a 100 bp DNA Ladder
standard (Invitrogen, available from Life Technologies,
Prague, Czech Republic) in the GenoSoft 4.0 program
(VWR International BVBA, Leuven, Belgium). The PCR
product concentration enabled equimolar pooling of all
samples for each gene. The PCR product pooled for all
samples was separated on a gel, the band of expected length
excised and DNA purified with the High Pure PCR Purifica-
tion Kit (Roche Diagnostics GmbH, Mannheim, Germany).
The gene products were pooled equimolarly with a final
concentration of 29 ng μl− 1 and the DNA samples were
sequenced commercially on a SMRT (single molecule
real-time) platform (Pacific Biosciences) in two technical
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replicates. The DNA template library was prepared with the
PacBio DNATemplate Prep Kit 2.0 according to the PacBio
protocol for 10 kb Template Preparation and Sequencing.
The DNA template library was bound to the DNA polymer-
ase with the PacBio DNA/Polymerase Binding Kit P4 for
the first replicate, and P5 for the second replicate. Sequen-
cing on the PacBio RS II sequencer was performed with the
PacBio DNA Sequencing Kit, using C2 and C3 chemistry
for the two replicates, respectively. Sequencing was per-
formed on 2 SMRT Cells with a 180-min movie time per
SMRT Cell.

Data processing
The reads were de-multiplexed as part of the commercial
raw data analysis during sequencing. Data obtained from
SMRT gene sequencing were assembled to the reference
sequences in Geneious with coverage > 10× and percent
similarity in the alignment > 50%. Processed sequence data
were aligned using MAFFT version 7.307 [69] to an anno-
tated sequence reference obtained from the NCBI data-
base. Alignments were edited in Geneious to contain only
coding sequences of the gene fitting the appropriate open
reading frame from the sequence reference annotation.

Data analysis
A maximum-likelihood phylogeny of Chiropteran spe-
cies obtained in a previous study [70] was used for
phylogenetic analysis of positive selection. The tree was
unrooted and subset to contain species present in each
corresponding sequence alignment (Additional file 1). In
genes where more than one individual per species was
sequenced, the respective tree tip was populated with a
polytomy with zero-length branches to fit the number of
individuals per species analysed in the alignment.
We tested the codons in alignment for signs of posi-

tive selection, defined as rate ratio of non-synonymous
and synonymous substitutions (ω = dN/dS). We used the
CODEML program from the PAML 4.9 package [25] to
estimate ω for the respective partial gene sequences, and
variability between sites using the maximum likelihood
method. Signals for positive selection were estimated
from a comparison of nested models implemented in
PAML using the likelihood ratio test (LRT).
The one ratio model (M0) [71, 72] sets one ω for all sites

along the tested gene. A corresponding alternative model,
the discrete model (M3) [4], allows a predefined number
of site classes to vary in ω. While the nearly neutral model
(M1) [73] does not allow ω to vary, the rate of synonym-
ous mutations may vary at each site, with the rate of
non-synonymous mutations being equal to the synonym-
ous or equal to 0. An alternative to M1, the positive selec-
tion model (M2) [73], is derived from the neutral (M1)
model and allows the rate of non-synonymous mutations
to exceed the rate of synonymous mutations (ω > 1). In

the beta M7 model [71], ω distribution in sites is limited
to interval [0,1], meaning that the signal for predominant
positive selection cannot be detected. The alternative
nested model, beta&ω (M8) [74], allows the values of ω to
be larger than 1.
A comparison of the one ratio (M0) model and the

discrete (M3) model was used to test whether ω varied
between sites. To test for positive selection signals in the
codon sequence data, we paired the nearly neutral (M1)
and positive selection (M2) models and the beta (M7)
and beta&ω (M8) models, with the first model pair used
as a null model.
The nested model’s likelihood values were compared

using the LRT (twice the difference between the
log-likelihoods; 2ΔlnL) of the null and alternative
models. The 2ΔlnL values were then compared to χ2 dis-
tributions for M0 - M3, M1 - M2 and M7 - M8 compar-
isons. We corrected significance of those analyses with
false discovery rates (FDR) and accepted the adjusted
levels of significance at 5% as significant.
Proteins with significant results in locus-level selection

were analysed for sites under positive selection, identi-
fied based on the Bayes empirical Bayes method (BEB)
[75] implemented in PAML for site tests of positive se-
lection M1 – M2 and M7 - M8. The BEB method incor-
porates uncertainty in maximum likelihood estimates of
parameters of the ω distribution by integrating over their
prior distribution. By correcting for the uncertainty in
parameter estimates, BEB is well suited for small data-
sets [75]. For visualisation of sites within the protein
structure, Phyre2 structure prediction software [76] was
used to predict protein models using a reference bat spe-
cies protein sequence (XP_006104612.1, XP_014396764.1,
XP_006758647.1, XP_015416692.1).
In genes with sites undergoing positive selection, we

identified phylogeny branches under selection using the
branch-site test of positive selection [75, 77]. The branch
site test is used to detect branches under positive selec-
tion pre-specified in the tested phylogeny (foreground
branches), where the other background branches would
undergo purifying selection. In every tree, we tested each
individual branch as a foreground branch for signs of
positive selection. The branch site test is performed by
comparing modified branch site model A, allowing ω to
vary between branches, with null model A1 where ω = 1.
The nested models were tested by LRT and compared to
χ2 distribution with df = 2 and p-values were adjusted
with the FDR.
The monophyletic clade of Palearctic species including

M. davidii, M. emarginatus and M. myotis was modelled
by clade model C [78] as a foreground tested clade, which
was compared to a null model M2a_rel [79]. The nested
models were tested by LRT and compared to χ2 distribu-
tion with df = 1, with p-values adjusted by the FDR.

Harazim et al. BMC Zoology  (2018) 3:8 Page 10 of 13



Additional files

Additional file 1: Accession numbers of bat DNA sequences and their
respective phylogeny. The coding sequences of the respective genes
(alignment length in parentheses) were used for maximum likelihood
analysis of natural selection in bats. The guide tree was pruned from a
previously published multilocus phylogeny [70]. The scale bar is in
substitutions bp− 1. (PDF 189 kb)

Additional file 2: Bat samples amplified in this study. Populations were
considered as hibernating (+) or non-hibernating (−) in the country of sample
origin. Species were considered infected when Pseudogymnoascus destructans
was detected in at least one individual using molecular genetic or culture
experiments and positive for WNS when P. destructans was confirmed and
diagnostic lesions found on skin histopathology [10, 22]. (XLSX 42 kb)

Additional file 3: Primers and amplification conditions for genes with a
skin integrity or water metabolism function. Primer pairs were designed
for genes expressed in Myotis myotis with white-nose syndrome
(Accession numbers: SRX2270325, SRX2266671). (XLSX 47 kb)

Abbreviations
BEB: Bayes empirical Bayes; FDR: False discovery rate; LRT: Likelihood ratio
test; WNS: White-nose syndrome
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